三角形五心讲课学习教案.pptx
上传人:王子****青蛙 上传时间:2024-09-12 格式:PPTX 页数:31 大小:440KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

三角形五心讲课学习教案.pptx

三角形五心讲课学习教案.pptx

预览

免费试读已结束,剩余 21 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

会计学一重心(zhòngxīn)重心(zhòngxīn)的性质重心三条中线定相交,交点位置真奇巧,交点命名为“重心”,重心性质要明了,重心分割中线段(xiànduàn),数段之比听分晓;长短之比二比一,灵活运用掌握好.外心外心(wàixīn)的性质:外心三角形有六元素,三个内角(nèijiǎo)有三边.作三边的中垂线,三线相交共一点.此点定义为“外心”,用它可作外接圆.“内心”“外心”莫记混,“内切”“外接”是关键.三角形垂心(chuíxīn)垂心(chuíxīn)的性质:垂心三角形上作三高,三高必于垂心交.高线分割三角形,出现直角三对整,直角三角形有十二,构成六对相似形,四点共圆图中有,细心(xìxīn)分析可找清三角形垂心到任一顶点的距离等于其外心到对边距离的2倍三角形内心(nèixīn)1、三角形的三条内角平分线交于一点。该点即为三角形的内心。2、直角三角形的内心到边的距离等于(děngyú)两直角边的和减去斜边的差的二分之一。内心三角对应三顶点,角角都有平分线,三线相交(xiāngjiāo)定共点,叫做“内心”有根源;点至三边均等距,可作三角形内切圆,此圆圆心称“内心”如此定义理当然.三角形旁心(pánɡxīn)三角形的中心:只有正三角形才有中心,这时重心,内心,外心,垂心(chuíxīn),四心合一。三角形的重心(zhòngxīn)、外心、垂心、内心、旁心称为三角形的五心。三角形四心的复习(fùxí)重心:证明三条(sāntiáo)中线交于同一点重心分中线的比为2:1外心:证明三条(sāntiáo)垂直平分线交于同一点内心:证明(zhèngmíng)三条角平分线交于同一点相关(xiāngguān)结论三角形各心常见(chánɡjiàn)应用举例练习(liànxí)例1设G为△ABC的重心,M、N分别为BC、CA的中点,求证(qiúzhèng):四边形GMCN和△GAB的面积相等.例2证明三角形的任一顶点(dǐngdiǎn)到垂心的距离,等于外心到对边的距离的二倍.练一练:小结(xiǎojié)