有关数学学习方法指导论文.docx
上传人:文阁****23 上传时间:2024-09-12 格式:DOCX 页数:10 大小:17KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

有关数学学习方法指导论文.docx

有关数学学习方法指导论文.docx

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

有关数学学习方法指导论文教学是培养创新型人才的主要途径。为了使我国在2013年跨入创新型国家行列,积极探索促进创新型人才培养的有效课程教学模式是新时期高等教育所要着力解决的重要课题。在此背景之下,研究性教学成为近年来我国创新教育教学研究的热点问题之一]。大学数学课程在高校课程体系中占据着不可替代的重要地位,是高校创新型人才培养的重要载体。因此,开展大学数学课程研究性教学的研究和实践对推进创新教育、实现创新型人才培养具有重要意义。本文对开展大学数学课程研究性教学的必要性和措施作了一些有益的探讨。开展大学数学课程研究性教学的必要性从数学的发展来看,问题是数学创新的源泉和动力。例如,德国数学家希尔伯特(D.Hilbert)在1900年召开的国际数学家大会上作了题为《数学问题》的演讲,提出被后人称为“希尔伯特问题”的23个数学问题。这些问题为数学家开展研究指明了方向。一个好的数学问题的价值在于其可以激发数学家的创新思维,引发思想、方法和理论方面的创新。因此,有人将好的数学问题比喻成会下蛋的金鹅。事实上,到目前为止,这23个问题中的大多数都已得到完满解决,促进了涉及数学基础的一些关键问题的研究和解决,直接推动了代数、几何、分析等数学分支的发展,催生出一系列的相关创新成果。从人才培养来看,具有较强的创造性思维和问题解决能力是创新型人才培养的重要目标。理论和实践的创新都来源于对问题的探索和解决过程,能够发现和提出问题是思维积极、具有较强创新意识和能力的一种表现。爱因斯坦曾经说过:“只有善于发现问题和提出问题的人,才能产生创新的冲动。”同时,分析问题视角的独特性和解决问题的新颖性是评判创新型人才创新能力高低的重要标准。而思维的创造性、问题解决能力是可以利用恰当的载体通过后天的训练获得和提高的。数学课程就是进行这种训练的恰当载体,而且几千年的教育实践也证明了其有效性。著名数学教育家波利亚(G.Pólya)认为数学能力是解决问题的才智。研究性教学是一种以问题为中心、以提高学习者的问题解决能力为目标的教学形式。开展数学课程研究性教学是对学生进行数学思维训练、提高其创新能力和意识的必然选择。事实上,问题在数学学习和思维过程中发挥着重要作用:问题情境引发数学学习者的抽象思维和形象思维等思维活动,进而诱发学习者探究和创新等认知活动的进行。在对数学问题的研究过程中,学习者要经历观察、比较、分析、归纳、猜想、概括、构造、判断、推理等多种认知过程,要综合运用抽象、逻辑、直觉等多种思维能力。因此,这一过程就是学习者自身经历知识的获取、探究、形成和运用的过程,就是学习者实现知识和能力的自我建构过程。在数学课程研究性教学中,教师通过创设问题探究的研究性教学情境,启发、引导学生通过对问题的分析和研究来积极主动完成知识的探究和学习。在这一教学模式下,教师的目标由“授人以鱼”向“授人以渔”转变,教师的角色由知识的灌输者向问题情境的创设者、学习和研究策略的指导者转变;学生的学习目标由“学会”向“会学”转变,学生的角色由消极被动的接受者向积极主动的参与者、知识与能力的自我建构者转变。教师与学生围绕问题开展质疑、验证、讨论等多种交流互动,学生要亲历问题的发现、分析和解决全过程。所以,开展以问题为中心的大学数学课程研究性教学能够促进数学课程教学模式的转变,使学习者的数学思维、创新能力得到更为有效的训练和提高。开展大学数学课程研究性教学的措施针对大学数学课程的特点,并结合近年来教学实践,我们认为可以采取以下措施切实推进大学数学课程研究性教学的开展,更好地服务于创新型人才培养这一中心目标。(一)将数学文化融入课程教学将数学文化有机融入数学课程教学,以此推动数学课程研究性教学的进行,主要着眼于以下两方面。1.研究性教学是以问题为中心的教学方法。教师必须根据教学目标,结合教学内容设计恰当的问题,合理选取素材,创设一个开放生动的学习和探究的问题情境,引导学生自主地开展学习、研究活动。而数学文化中的数学猜想、数学史料、数学名题等是教师开展研究性教学时进行问题设计和研究素材选取的重要来源。例如,在高等数学课程中,利用第二次数学危机的有关问题和情况开展微积分相关概念的研究性教学。在介绍完无穷小量、极限、导数、微分等概念后,向学生提出一些问题:哪些概念是微积分中的根本性概念?无穷小量是不是零?在学生思考和讨论的过程中,穿插介绍第二次数学危机中曾经出现过的一些谬论、错误认识,让学生去辨识。同时,还做一些包含错误的演算演示,让学生找出演算中的错误。比如,在增量为无穷小的情况下,直接令其为零。在这样的研究性教学中,学生能够搞清微积分中诸如无穷小量、无穷大量、极限、导数、微分等重要概念。同时,他们也能体会到:数学学习和研究不能陷于形式的计算和推导,要注意自己数学理论基础的严密和扎实性。事实上,在这样的