第二次月考滚动检测卷-江苏南通市田家炳中学数学九年级下册锐角三角函数专题测试试题(解析版).docx
上传人:一吃****新冬 上传时间:2024-09-12 格式:DOCX 页数:7 大小:209KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

第二次月考滚动检测卷-江苏南通市田家炳中学数学九年级下册锐角三角函数专题测试试题(解析版).docx

第二次月考滚动检测卷-江苏南通市田家炳中学数学九年级下册锐角三角函数专题测试试题(解析版).docx

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

江苏南通市田家炳中学数学九年级下册锐角三角函数专题测试考试时间:90分钟;命题人:校数学教研室考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、图①是第七届国际数学教育大会(ICME)会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图②所示的四边形.若,,则的值为()A.B.C.D.2、如图,中,,,点是边上一动点,连接,以为直径的圆交于点.若长为4,则线段长的最小值为()A.B.C.D.3、在直角△ABC中,,,AC=2,则tanA的值为()A.B.C.D.4、某人沿坡度的斜坡向上前进了10米,则他上升的高度为()A.5米B.C.D.5、若tanA=2,则∠A的度数估计在()A.在0°和30°之间B.在30°和45°之间C.在45°和60°之间D.在60°和90°之间6、在Rt△ABC中,∠C=90°,AC=4,BC=3,则下列选项正确的是()A.sinA=B.cosA=C.cosB=D.tanB=7、如图,等腰Rt△ABC中,∠C=90°,AC=5,D是AC上一点,若tan∠DBA=,则AD=()A.1B.2C.D.28、球沿坡角的斜坡向上滚动了5米,此时钢球距地面的高度是().A.米B.米C.米D.米9、在中,,则的值是()A.B.C.D.10、如图,在的网格中,A,B均为格点,以点A为圆心,AB的长为半径作弧,图中的点C是该弧与格线的交点,则的值是()A.B.C.D.第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题3分,共计30分)1、如图,在ABC中,∠C=90°,BD平分∠ABC交AC于点D,DE⊥AB于点E,AE=6,cosA=.(1)CD=___;(2)tan∠DBC=___.2、如图,AB为半圆O的直径,点C为半圆上的一点,CD⊥AB于点D,若AB=10,CD=4,则sin∠BCD的值为____.3、如图,等腰直角三角形ABC,∠C=90°,AC=BC=4,M为AB的中点,∠PMQ=45°,∠PMQ的两边分别交BC于点P,交AC于点Q,若BP=3,则AQ=_____.4、已知0°<a<90°,当a=_________时,sina=;当a=_________时,tana=.5、比较大小:tan46°_____cos46°.6、如图所示,草坪边上有互相垂直的小路m,n,垂足为E,草坪内有一个圆形花坛,花坛边缘有A,B,C三棵小树.在不踩踏草坪的前提下测圆形花坛的半径,某同学设计如下方案:若在小路上P,Q,K三点观测,发现均有两树与观测点在同一直线上,从E点沿着小路n往右走,测得∠1=∠2=∠3,EQ=16米,QK=24米;从E点沿着小路m往上走,测得EP=15米,BP⊥m,则该圆的半径长为_______米.7、图是由边长相同的小正方形组成的网格,A,B,P,Q四点均在正方形网格的格点上,线段AB,PQ相交于点E,则tan∠AEP=_____.8、如图,在A处测得点P在北偏东60°方向上,在B处测得点P在北偏东30°方向上,若AP=6千米,则A,B两点的距离为_____千米.9、如图,已知RtABC中,斜边BC上的高AD=4,cosB,则AC=_____.10、cos30°的相反数是_____.三、解答题(5小题,每小题10分,共计50分)1、如图,上午9时,一条船从A处出发,以每小时40海里的速度向正东方向航行,9时30分到达B处,从A、B两处分别测得小岛C在北偏东和北偏东方向上,已知小岛C周围方圆30海里的海域内有暗礁.该船若继续向东方向航行,有触礁的危险吗?并说明理由.2、在中,,,为锐角且.(1)求的度数;(2)求的正切值.3、如图,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm,动点P从点A出发,以每秒2cm的速度沿折线AB﹣BC向终点C运动,同时动点Q从点C出发,以每秒1cm的速度向终点A运动.以PQ为底边向下作等腰Rt△PQR,设点P运动的时间为t秒(0<t<4).(1)直接写出AB的长;(2)用含t的代数式表示BP的长;(3)当点R在△ABC的内部时,求t的取值范围.4、(1)计算:;(2)先化简,再求值:,其中a满足.5、计算:(1
立即下载