如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
第七章遗传算法英国的博物学家达尔文通过研究提出了被恩格斯赞誉为“19世纪自然科学三大发现”之一的生物进化学说。达尔文的“贝格尔号”考察路线生物进化的过程和原因长颈鹿的进化示意图环境遗传算法(GeneticAlgorithm,简称GA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算机算法,它由美国Holland教授1975年提出。一、遗传算法概述一、遗传算法概述一、遗传算法概述一、遗传算法概述二、遗传学相关概念二、遗传学相关概念二、遗传学相关概念二、遗传学相关概念二、遗传学相关概念二、遗传学相关概念三、简单遗传算法三、简单遗传算法三、简单遗传算法三、简单遗传算法三、简单遗传算法三、简单遗传算法三、简单遗传算法遗传算法具体步骤四、遗传算法应用举例1分析原问题可转化为在区间[0,31]中搜索能使y取最大值的点a的问题。那么,[0,31]中的点x就是个体,函数值f(x)恰好就可以作为x的适应度,区间[0,31]就是一个(解)空间。这样,只要能给出个体x的适当染色体编码,该问题就可以用遗传算法来解决。(1)设定种群规模,编码染色体,产生初始种群。将种群规模设定为4;用5位二进制数编码染色体;取下列个体组成初始种群S1:s1=13(01101),s2=24(11000)s3=8(01000),s4=19(10011)(2)定义适应度函数,取适应度函数:f(x)=x2(3)计算各代种群中的各个体的适应度,并对其染色体进行遗传操作,直到适应度最高的个体(即31(11111))出现为止。首先计算种群S1中各个体s1=13(01101),s2=24(11000)s3=8(01000),s4=19(10011)的适应度f(si)。容易求得f(s1)=f(13)=132=169f(s2)=f(24)=242=576f(s3)=f(8)=82=64f(s4)=f(19)=192=361再计算种群S1中各个体的选择概率。赌轮选择示意选择-复制于是,经复制得群体:s1’=11000(24),s2’=01101(13)s3’=11000(24),s4’=10011(19)交叉设交叉率pc=100%,即S1中的全体染色体都参加交叉运算。设s1’与s2’配对,s3’与s4’配对。分别交换后两位基因,得新染色体:s1’’=11001(25),s2’’=01100(12)s3’’=11011(27),s4’’=10000(16)变异设变异率pm=0.001。这样,群体S1中共有5×4×0.001=0.02位基因可以变异。0.02位显然不足1位,所以本轮遗传操作不做变异。于是,得到第二代种群S2:s1=11001(25),s2=01100(12)s3=11011(27),s4=10000(16)第二代种群S2中各染色体的情况假设这一轮选择-复制操作中,种群S2中的4个染色体都被选中,则得到群体:于是,得第三代种群S3:s1=11100(28),s2=01001(9)s3=11000(24),s4=10011(19)第三代种群S3中各染色体的情况设这一轮的选择-复制结果为:s1’=11100(28),s2’=11100(28)s3’=11000(24),s4’=10011(19)于是,得第四代种群S4:s1=11111(31),s2=11100(28)s3=11000(24),s4=10000(16)显然,在这一代种群中已经出现了适应度最高的染色体s1=11111。于是,遗传操作终止,将染色体“11111”作为最终结果输出。然后,将染色体“11111”解码为表现型,即得所求的最优解:31。将31代入函数y=x2中,即得原问题的解,即函数y=x2的最大值为961。例4.2用遗传算法求解TSP。分析由于其任一可能解——一个合法的城市序列,即n个城市的一个排列,都可以事先构造出来。于是,我们就可以直接在解空间(所有合法的城市序列)中搜索最佳解。这正适合用遗传算法求解。(1)定义适应度函数我们将一个合法的城市序列s=(c1,c2,…,cn,cn+1)(cn+1就是c1)作为一个个体。这个序列中相邻两城之间的距离之和的倒数就可作为相应个体s的适应度,从而适应度函数就是(2)对个体s=(c1,c2,…,cn,cn+1)进行编码。但对于这样的个体如何编码却不是一件直截了当的事情。因为如果编码不当,就会在实施交叉或变异操作时出现非法城市序列即无效解。例如,对于5个城市的TSP,我们用符号A、B、C、D、E代表相应的城市,用这5个符号的序列表示可能解即染色体。然后进行遗传操作。设s1=(A,C,B,E,D,A),s2=(A,E,D,C,B,A)实施常规的交叉或变异操作,如交换后三位,得