步态识别论文.docx
上传人:王子****青蛙 上传时间:2024-09-13 格式:DOCX 页数:7 大小:1.6MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

步态识别论文.docx

步态识别论文.docx

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

步态识别学号:12426009班级:通信122姓名:楚舒琦目录TOC\o"1-3"\h\uHYPERLINK\l"_Toc25280"摘要PAGEREF_Toc252803HYPERLINK\l"_Toc3868"一、背景介绍PAGEREF_Toc38684HYPERLINK\l"_Toc25198"二、相关研究PAGEREF_Toc251984HYPERLINK\l"_Toc11829"三、主题(算法)PAGEREF_Toc118295HYPERLINK\l"_Toc19678"PAGEREF_Toc196786HYPERLINK\l"_Toc12631"PAGEREF_Toc126318HYPERLINK\l"_Toc12098"PAGEREF_Toc120988HYPERLINK\l"_Toc11632"四、实验PAGEREF_Toc116329HYPERLINK\l"_Toc7496"五、结果讨论PAGEREF_Toc749611HYPERLINK\l"_Toc22534"六、总结PAGEREF_Toc2253412HYPERLINK\l"_Toc27820"七、应用前景PAGEREF_Toc2782012HYPERLINK\l"_Toc29962"八、技术难点及解决途径PAGEREF_Toc2996213HYPERLINK\l"_Toc2611"PAGEREF_Toc261114HYPERLINK\l"_Toc31836"PAGEREF_Toc3183615HYPERLINK\l"_Toc7078"九、参考文献PAGEREF_Toc707815摘要步态识别是一种新兴的生物特征识别技术,旨在通过人们走路的姿态进行身份识别,与其他的生物识别技术相比,步态识别具有非接触远距离和不容易伪装的优点。在智能视频监控领域,比面像识别更具优势。对步态识别的优缺点以及步态识别所涉及到的运动分割、特征提取与选择、模式识别算法进行了综述,并对步态识别中存在的问题与未来的研究方向进行了讨论。关键词:生物特征识别;步态识别;特征提取;运动分割;动态时间规正背景介绍步态是指人们行走时的方式,这是一种复杂的行为特征。罪犯或许会给自己化装,不让自己身上的哪怕一根毛发掉在作案现场,但有样东西他们是很难控制的,这就是走路的姿势。英国南安普敦大学电子与计算机系的马克·尼克松教授的研究显示,人人都有截然不同的走路姿势,因为人们在肌肉的力量、肌腱和骨骼长度、骨骼密度、视觉的灵敏程度、协调能力、经历、体重、重心、肌肉或骨骼受损的程度、生理条件以及个人走路的"风格"上都存在细微差异。对一个人来说,要伪装走路姿势非常困难,不管罪犯是否带着面具自然地走向银行出纳员还是从犯罪现场逃跑,他们的步态就可以让他们露出马脚。人类自身很善于进行步态识别,在一定距离之外都有经验能够根据人的步态辨别出熟悉的人。步态识别的输入是一段行走的视频图像序列,因此其数据采集与面像识别类似,具有非侵犯性和可接受性。但是,由于序列图像的数据量较大,因此步态识别的计算复杂性比较高,处理起来也比较困难。尽管生物力学中对于步态进行了大量的研究工作,基于步态的身份鉴别的研究工作却是刚刚开始。步态识别主要提取的特征是人体每个关节的运动。到目前为止,还没有商业化的基于步态的身份鉴别系统。相关研究信息融合:感知融合是人类感知外部世界的本能之一。人类可以非常自然地运用这一能力把来自人体各个感知器官眼耳鼻四肢的信息图像声音气味触觉组合起来并使用先验知识去估计理解和识别周围的环境以及正在发生的事情。融合理论正是对人类这一本能的模仿旨在利用计算机技术对按时序获得的多源观测信息在一定准则下加以自动分析综合以完成所需的决策和估计任务而进行的信息处理过程。信息融合的基本原理就像人脑综合处理信息一样充分利用多源信息通过对这些多源的观测信息的合理支配和使用把多源信息在空间或时间上的冗余或互补依据某种准则来进行组合以获得被测对象的一致性解释或描述。按照信息抽象的个层次可将信息融合分为3级(像素级融合特征级融合和决策级融合)。像素级融合是在采集到的原始数据上进行的融合是原始测报未经预处理之前就进行的综合和分析是最低层次的融合。特征级融合属于中间层次它先对原始信息进行特征提取然后对特征信息进行关联处理和综合分析最终用于目标识别。一般来说提取的特征信息应该是这一目标的充分表示量并且去除了一定的冗余信息。其优点是实现了可观的信息压缩有利于实时的目标识别。特征级融合算法的一般流程如图1所示。图