如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
会计学模糊控制在处理数值数据、自学习能力等方面还远没有达到人脑的境界。人工神经网络从另一个角度出发(chūfā),即从人恼的生理学和心理学着手,通过人工模拟人脑的工作机理来实现机器的部分智能行为。人工神经网络(简称神经网络,NeuralNetwork)是模拟人脑思维方式的数学模型。神经网络是在现代生物学研究人脑组织成果的基础上提出的,用来模拟人类大脑神经网络的结构和行为。神经网络反映(fǎnyìng)了人脑功能的基本特征,如并行信息处理、学习、联想、模式分类、记忆等。20世纪80年代以来,人工神经网络(ANN,ArtificialNeuralNetwork)研究所取得的突破性进展(jìnzhǎn)。神经网络控制是将神经网络与控制理论相结合而发展起来的智能控制方法。它已成为智能控制的一个新的分支,为解决复杂的非线性、不确定、未知系统的控制问题开辟了新途径。神经网络的发展历程经过4个阶段。1启蒙期(1890-1969年)1890年,W.James发表(fābiǎo)专著《心理学》,讨论了脑的结构和功能。1943年,心理学家和数学家W.Pitts提出了描述脑神经细胞动作的数学模型,即M-P模型(第一个神经网络模型)。在美、日等国有少数学者继续着神经网络模型和学习算法的研究,提出了许多有意义的理论(lǐlùn)和方法。例如,1969年,S.Groisberg和A.Carpentet提出了至今为止最复杂的ART网络,该网络可以对任意复杂的二维模式进行自组织、自稳定和大规模并行处理。1972年,Kohonen提出了自组织映射的SOM模型。3复兴期(1982-1986)1982年,物理学家Hoppield提出了Hoppield神经网络模型,该模型通过引入能量函数,实现了问题优化求解,1984年他用此模型成功地解决了旅行商路径优化问题(TSP)。在1986年,在Rumelhart和McCelland等出版《ParallelDistributedProcessing》一书,提出了一种(yīzhǒnɡ)著名的多层神经网络模型,即BP网络。该网络是迄今为止应用最普遍的神经网络。4新连接(liánjiē)机制时期(1986-现在)神经网络从理论走向应用领域,出现了神经网络芯片和神经计算机。神经网络主要应用领域有:模式识别与图象处理(语音、指纹、故障检测和图象压缩等)、控制与优化、预测与管理(市场预测、风险分析)、通信等。6.2神经网络原理神经生理学和神经解剖学的研究表明,人脑极其复杂,由一千多亿个神经元交织在一起的网状结构构成,其中大脑皮层约140亿个神经元,小脑皮层约1000亿个神经元。人脑能完成智能(zhìnénɡ)、思维等高级活动,为了能利用数学模型来模拟人脑的活动,导致了神经网络的研究。神经系统的基本构造是神经元(神经细胞),它是处理人体内各部分之间相互信息传递的基本单元。每个神经元都由一个细胞体,一个连接(liánjiē)其他神经元的轴突和一些向外伸出的其它较短分支—树突组成。轴突功能是将本神经元的输出信号(兴奋)传递给别的神经元,其末端的许多神经末梢使得兴奋可以同时传送给多个神经元。树突的功能(gōngnéng)是接受来自其它神经元的兴奋。神经元细胞体将接收到的所有信号进行简单地处理后,由轴突输出。神经元的轴突与另外神经元神经末梢相连的部分称为突触。神经元由三部分构成:(1)细胞体(主体部分):包括(bāokuò)细胞质、细胞膜和细胞核;(2)树突:用于为细胞体传入信息;(3)轴突:为细胞体传出信息,其末端是轴突末梢,含传递信息的化学物质;(4)突触:是神经元之间的接口(104~105个/每个神经元)。一个神经元通过其轴突的神经末梢,经突触与另外一个神经元的树突连接,以实现信息的传递。由于突触的信息传递特性是可变的,随着神经冲动传递方式的变化,传递作用强弱不同,形成了神经元之间连接的柔性,称为结构的可塑性。通过树突和轴突,神经元之间实现了信息的传递。神经元具有如下功能(gōngnéng):(1)兴奋与抑制:如果传入神经元的冲动经整和后使细胞膜电位升高,超过动作电位的阈值时即为兴奋状态,产生神经冲动,由轴突经神经末梢传出。如果传入神经元的冲动经整和后使细胞膜电位降低,低于动作电位的阈值时即为抑制状态,不产生神经冲动。(2)学习与遗忘:由于神经元结构的可塑性,突触的传递作用可增强和减弱,因此神经元具有学习与遗忘的功能(gōngnéng)。6.3神经网络(wǎngluò)的分类目前神经网络(wǎngluò)模型的种类相当丰富,已有近40余种神经网络(wǎngluò)模型。典型的神经网络(wǎngluò)有多层前向传播网络(wǎngluò)(BOP网络(wǎngluò))、Hopfield网络(wǎ