高三理科数学知识点和易错点专题排查.pdf
上传人:阳炎****找我 上传时间:2024-09-11 格式:PDF 页数:25 大小:1.1MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

高三理科数学知识点和易错点专题排查.pdf

高三理科数学知识点和易错点专题排查.pdf

预览

免费试读已结束,剩余 15 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第1讲集合、逻辑用语、复数、推理证明、平面向量排查考前必记的数学概念、公式、性质、定理在下面14个小题中,有2个表述不正确,请在题后用“√”或“×”判定,并改正过来.1.真子集:若A⊆B,但∃x∈B,且x∉A,则AB;∅是任何集合的子集,是任何非空集合的真子集.()2.交集的补集等于补集的并集,即∁U(A∩B)=(∁UA)∪(∁UB);并集的补集等于补集的交集,即∁U(A∪B)=(∁UA)∩(∁UB).()3.全称命题p:∀x∈M,p(x)的否定是p:∃x0∈M,p(x0);特称命题p:∃x0∈M,p(x0)的否定是p:∀x∈M,p(x).()4.若p⇒q,且qp,则p是q的充分不必要条件,q是p的充分不必要条件.()5.否命题是原命题的条件和结论同时否定、命题的否定仅仅否定原命题的结论(而条件不变).()6.设非零向量a=(x1,y1),b=(x2,y2),则a∥b⇔x1y2-x2y1=0;a⊥b⇔x1x2+y1y2=0.()7.设非零向量a,b,且〈a,b〉=θ,则|a||b|cosθ叫向量a与b的数量积;规定0与任意非零向量的数量积为0.如果a·b<0,则角θ一定为钝角.()8.若a≠0,则a·b=0⇔b=0.()→→→→PAPBPCPA9.向量,,中三终点A、B、C共线⇔存在实数α,β使得=α→→PBPC+β且α+β=1.()10.设θ是a与b的夹角,则|a|cosθ叫做a在b的方向上的投影,|b|cosθ叫做b在a的方向上的投影,b在a的方向的投影是一个实数,1而不是向量.()a·b11.若a=(x1,y1),b=(x2,y2),则cos〈a,b〉=|a||b|=x1x2+y1y2x21+y21·x2+y2.()12.归纳推理是由部分到整体、个别到一般的推理,类比推理是由特殊到特殊的推理;演绎推理是由一般到特殊的推理.()13.形如a+bi(a,b∈R)的数叫做复数;若a=0,且b≠0时,则a+bi为纯虚数.()→OZ14.复数z=a+bi(a,b∈R)与复平面内的点Z(a,b)、向量=(a,b)一一对应.()1.考生不能正确理解集合中代表元素所表示的意义,数集与点集混淆、函数的定义域与值域混淆、图形集与点集混淆等,如{x|y=x2-2x+3}与{y|y=x2-2x+3}以及{(x,y)|y=x2-2x+3}分别表示函数y=x2-2x+3的定义域、值域以及函数图象上的点集.2.考生容易忽视两个集合基本运算中端点值的取舍导致增解或漏解,求解集合的补集时由于错误否定条件导致错解,如已知A=Error!,误把集合A的补集写为Error!导致漏解;集合运算时,切莫遗漏空集.3.考生易把命题的否定与否命题混淆,否定含有一个量词的命题时忽视量词的改变导致出错.4.考生易混淆充要条件的判断中“甲是乙的什么条件”与“甲的一个什么条件是乙”.5.考生易混淆向量共线(平行)与直线平行,向量共线(平行)是指两向量所在的直线平行或重合,但两直线平行时一定不会重合.6.考生要特别注意零向量带来的问题:0的模是0,方向任意,并不是没有方向;0与任意非零向量平行;λ0=0(λ∈R),而不是等于0;0与任意向量的数量积等于0,即0·a=0,但不说0与任意非零向量垂直.7.复数相等的充要条件是复数问题实数化的主要解题途径,往往易忽视题目中给出的条件导致错误.两复数不全是实数时不能比较大小,但它们的模可比较大小.28.考生对复数的几何意义不明确,导致复数中的最值问题无法利用数形结合的思想进行解决.9.类比推理易盲目机械类比,不要被表面的假象(某一点表面相似)迷惑,应从本质上类比.用数学归纳法证明时,易盲目认为n0的起始取值n0=1,另外注意证明传递性时,必须用n=k成立时的归纳假设.第2讲算法与程序框图、不等式与线性规划及计数原理排查考前必记的数学概念、公式、性质、定理在下面8个小题中,有2个表述不正确,请在题后用“√”或“×”判定,并改正过来.1.循环结构一定包含条件结构.()2.点P1(x1,y1)和点P2(x2,y2)位于直线Ax+By+C=0的两侧的充要条件是(Ax1+By1+C)·(Ax2+By2+C)<0.()s23.若x+y=s(定值),那么当x=y时,xy有最大值4;若xy=P(定值),那么当x=y时,x+y有最小值2P.()4.从n个不同元素中,任取m(m≤n)个元素(这里的被取元素各不相同)按照一定顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.()5.(a+b)n=C0nan+C1nan-1b+…+C