如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
勾股定理说课稿关于勾股定理说课稿汇编6篇作为一名默默奉献的教育工作者,有必要进行细致的说课稿准备工作,借助说课稿可以有效提升自己的教学能力。如何把说课稿做到重点突出呢?以下是小编为大家收集的勾股定理说课稿6篇,仅供参考,希望能够帮助到大家。勾股定理说课稿篇1一、说教材(一)教材分析本节内容选自人教版八年级数学下册第17章第二节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判定定理,它是前面知识的继续和深化,勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法来证明几何问题的思想,为将来学习解析几何埋下了伏笔。(二)教学目标根据数学课标的要求和教材的具体内容,结合学生实际我确定了本节课的教学目标。知识技能:理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是不是直角三角形。了解逆命题的概念,以及原命题为真时,它的逆命题不一定为真。过程方法:1、通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成的过程2、通过用三角形三边的数量关系来判断三角形的形状,体验数形结合方法的应用3、通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题。情感态度:在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神(三)学情分析尽管已到初二下学期的学生知识增多,能力增强,但思维的局限性还很大,能力之间也有差距,而利用“构造法”证明勾股定理的逆定理学生第一次见到,它要求根据已知条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,而勾股定理逆定理的应用是本节重点重点:勾股定理逆定理的应用难点:勾股定理逆定理的证明二、说教法学法数学课程不仅注重知识、技能,以及情感意识和创造力的培养,同样注重社会实践和体验,教学要遵循以教师为主导,学生为主体的原则,因此我采用的教法学法如下:在教学中以小组合作,自主探索为形式,采用“提问引导法”,通过“提出疑问”来启发诱导学生,让学生自觉主动地去分析问题、解决问题,学生在操作过程中不断“发现问题——解决问题”,变学生“学会”为“会学”.这样不仅使学生学习目标明确,而且能够培养他们的合作精神和自主学习的能力。根据学法指导自主性和差异性原则,本节我主要采用自主探究学习法,通过设计一系列问题,引导学生主动探究新知,体现学习自主性,从不同层面发掘不同学生的不同能力。三、说教学准备1、多媒体教学课件2、纸片、直尺、圆规等3、对学生事先分组四、说教学过程根据本课教学内容以及数学课程学科特点,结合八年级学生的实际认知水平,我设计了如下六个教学环节:(一)复习提问、引入新课问题1:前面我们学习了勾股定理,你能说出它的题设和结论吗?问题2:若一个三角形三边具有a2+b2=c2,能否确定这个三角形是直角三角形?(二)动手操作、观察猜想探究一:分组做实验第一组同学每人画一个边长为3cm、4cm、5cm的`三角形;第二组同学每人画一个边长为2.5cm、6cm、7.5cm的三角形;第三组同学每人画一个边长为4cm、7.5cm、8.5cm的三角形;第四组同学每人画一个边长为2cm、5cm、6cm的三角形。问题1:观察这些三角形,它们分别是什么形状呢?并测量验证问题2:前三个三角形三边具有怎样的关系呢?问题3:结合三角形三边长度的平方关系,你能猜一猜三角形的三边长度与三角形的形状之间有怎样的关系吗?学生活动:动手、观察、测量、思考、猜想设计意图:由特殊到一般,归纳猜想得出勾股定理的逆命题,既培养学生动手操作能力和寻求解决数学问题的一般方法,又体验了数与形的内在联系。(三)实践验证,归纳证明教师出示问题问题1:对于一个真命题,它的逆命题是否也为真?学生举例说明。勾股定理的逆命题是否也正确?怎么证明?问题2:三边长度分别3cm,4cm,5cm的三角形与以3cm,4cm为直角边的直角三角形之间有什么关系,你是怎样得到的?(出示纸片)问题3:你能否借鉴问题2的方法来证明勾股定理的逆命题呢?学生活动:观察思考,动手操作,分组讨论,交流合作(教师引导学生主动探索,在师生互动中完成证明,得到勾股定理的逆定理)设计意图:把“构造直角三角形”这一方法的获取过程交给学生,让他们在不断的尝试、探究的过程中,亲身体验参与发现的愉悦,有效地突破本节的难点。勾股定理说课稿篇2一、教材分析(一)教材所处的地位这节课是九年制义务教育课程标准实验教科书八年级第十八章第一节勾股定理第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系