人教版初一数学下册名校课堂训练:期末压轴题测试培优试题.doc
上传人:小代****回来 上传时间:2024-09-12 格式:DOC 页数:48 大小:4.9MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

人教版初一数学下册名校课堂训练:期末压轴题测试培优试题.doc

人教版初一数学下册名校课堂训练:期末压轴题测试培优试题.doc

预览

免费试读已结束,剩余 38 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一、解答题1.如图1,在平面直角坐标系中,,且满足,过作轴于.(1)求的面积.(2)若过作交轴于,且分别平分,如图2,求的度数.(3)在轴上存在点使得和的面积相等,请直接写出点坐标.2.如图,已知直线射线,.是射线上一动点,过点作交射线于点,连接.作,交直线于点,平分.(1)若点,,都在点的右侧.①求的度数;②若,求的度数.(不能使用“三角形的内角和是”直接解题)(2)在点的运动过程中,是否存在这样的偕形,使?若存在,直接写出的度数;若不存在.请说明理由.3.已知,如图1,射线PE分别与直线AB,CD相交于E、F两点,∠PFD的平分线与直线AB相交于点M,射线PM交CD于点N,设∠PFM=α°,∠EMF=β°,且(40﹣2α)2+|β﹣20|=0(1)α=,β=;直线AB与CD的位置关系是;(2)如图2,若点G、H分别在射线MA和线段MF上,且∠MGH=∠PNF,试找出∠FMN与∠GHF之间存在的数量关系,并证明你的结论;(3)若将图中的射线PM绕着端点P逆时针方向旋转(如图3),分别与AB、CD相交于点M1和点N1时,作∠PM1B的角平分线M1Q与射线FM相交于点Q,问在旋转的过程中的值是否改变?若不变,请求出其值;若变化,请说明理由.4.如图1,已AB∥CD,∠C=∠A.(1)求证:AD∥BC;(2)如图2,若点E是在平行线AB,CD内,AD右侧的任意一点,探究∠BAE,∠CDE,∠E之间的数量关系,并证明.(3)如图3,若∠C=90°,且点E在线段BC上,DF平分∠EDC,射线DF在∠EDC的内部,且交BC于点M,交AE延长线于点F,∠AED+∠AEC=180°,①直接写出∠AED与∠FDC的数量关系:.②点P在射线DA上,且满足∠DEP=2∠F,∠DEA﹣∠PEA=∠DEB,补全图形后,求∠EPD的度数5.已知:直线AB∥CD,直线MN分别交AB、CD于点E、F,作射线EG平分∠BEF交CD于G,过点F作FH⊥MN交EG于H.(1)当点H在线段EG上时,如图1①当∠BEG=时,则∠HFG=.②猜想并证明:∠BEG与∠HFG之间的数量关系.(2)当点H在线段EG的延长线上时,请先在图2中补全图形,猜想并证明:∠BEG与∠HFG之间的数量关系.6.如图1,已知直线m∥n,AB是一个平面镜,光线从直线m上的点O射出,在平面镜AB上经点P反射后,到达直线n上的点Q.我们称OP为入射光线,PQ为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即∠OPA=∠QPB.(1)如图1,若∠OPQ=82°,求∠OPA的度数;(2)如图2,若∠AOP=43°,∠BQP=49°,求∠OPA的度数;(3)如图3,再放置3块平面镜,其中两块平面镜在直线m和n上,另一块在两直线之间,四块平面镜构成四边形ABCD,光线从点O以适当的角度射出后,其传播路径为O→P→Q→R→O→P→…试判断∠OPQ和∠ORQ的数量关系,并说明理由.7.阅读下面的文字,解答问题大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:<<,即2<<3,∴的整数部分为2,小数部分为(﹣2)请解答:(1)整数部分是,小数部分是.(2)如果的小数部分为a,的整数部分为b,求|a﹣b|+的值.(3)已知:9+=x+y,其中x是整数,且0<y<1,求x﹣y的相反数.8.如果有一列数,从这列数的第2个数开始,每一个数与它的前一个数的比等于同一个非零的常数,这样的一列数就叫做等比数列(GeometricSequences).这个常数叫做等比数列的公比,通常用字母q表示(q≠0).(1)观察一个等比列数1,,…,它的公比q=;如果an(n为正整数)表示这个等比数列的第n项,那么a18=,an=;(2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步骤进行:令S=1+2+4+8+16+…+230…①等式两边同时乘以2,得2S=2+4+8+16++32+…+231…②由②﹣①式,得2S﹣S=231﹣1即(2﹣1)S=231﹣1所以请根据以上的解答过程,求3+32+33+…+323的值;(3)用由特殊到一般的方法探索:若数列a1,a2,a3,…,an,从第二项开始每一项与前一项之比的常数为q,请用含a1,q,n的代数式表示an;如果这个常数q≠1,请用含a1,q,n的代数式表示a1+a2+a3+…+an.9.观察下列各式:;;;……根据上面的等式所反映的规律,