2022年福建省厦门高三数学11月月考理新人教A版会员独享.docx
上传人:是立****92 上传时间:2024-09-09 格式:DOCX 页数:6 大小:14KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

2022年福建省厦门高三数学11月月考理新人教A版会员独享.docx

2022年福建省厦门高三数学11月月考理新人教A版会员独享.docx

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

厦门六中2011届高三数学第二次月考(理科)试题第Ⅰ卷(选择题共50分)一.选择题(本大题共10小题,每小题5分,共50分.在每小题所给的四个答案中有且只有一个答案是正确的)1.在复平面内,复数对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限2.已知命题,则的否定形式为A.B.C.D.3.函数的定义域为(A)(B)(C)(D)4.三个数,,的大小顺序为(A)(B)(C)(D)5.设等差数列的前项和为,若,则的值是A.24B.19C.15D.366.已知,则的值等于A.B.C.D.7.设等比数列的前n项和为,若=3,则的值是(A)2(B)(C)(D)38.若方程的根在区间上,则的值为A.B.1C.或1D.或29.已知函数,其导函数的部分图象如图所示,则函数的解析式为A.B.C.D.10.函数图象经过四个象限,则实数的取值范围是A.B.C.D.第Ⅱ卷(非选择题共100分)二.填空题(本大题共5小题,每小题4分,共20分,将答案填在题后的横线上.)11.平面向量与的夹角为,,则**********12.设数列中,,,则=**********.13.计算**********.14.积分的值是**********15.设是偶函数,若曲线在点处的切线的斜率为1,则该曲线在处的切线的斜率为__**********___.三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分13分)已知命题,q:0;,若是的必要而不充分条件,求实数m的取值范围。17.(本小题满分13分)已知向量(m是常数),(1)若是奇函数,求m的值;(2)设函数,讨论当实数m取何值时,函数有两个零点,一个零点,没有零点?18.(本小题满分13分)设函数.(Ⅰ)求的最小正周期.(Ⅱ)若函数与的图像关于直线对称,求当时的最大值.19.(本题满分13分)C甲船在A处观察到乙船在它的北偏东方向的B处,两船相距a海里,乙船正向北行驶,若甲船速度是乙船速度的倍,问甲船应取什么方向前进才能在最短时间内追上乙船,此时乙船行驶多少海里?BA20.(本小题满分14分)数列{}、{}的前n项和分别为,,且=1(n∈N*)。(1)证明数列{}是等比数列;(2)若数列{}满足:,且(n∈N*),求证:21.(本小题满分14分)设函数.(Ⅰ)当时,求的极值;(Ⅱ)当时,求的单调区间;(Ⅲ)若对任意及,恒有成立,求的取值范围.厦门六中2011届高三年级第二次月考数学(理科)试题评分标准一.DCCDAABCBD二.11.12.13.414.15.16.解:由p得:.…………3分由q得:,……………6分因为是的必要而不充分条件,所以p是q的充分不必要条件,………8分所以(等号不能同时取到)………11分解得就是所求的实数m的取值范围.…………13分17.解:(1)由题知=,所以=…3分由题知对任意的不为零的实数,都有,即=恒成立,所以.……………………6分(2)由(1)知,,则设,则函数的图像交点个数即为函数的零点个数,…………8分时,;时,;所以,…………11分所以,当时,函数有两个零点;当时,函数有一个零点;当时,函数没有零点.…………13分说明:若用均值不等式讨论的图像性质,或用其它方法求解,可酌情给分18.解:(Ⅰ)===……………5分故的最小正周期为T==8………………6分(Ⅱ)解法一:在的图象上任取一点,它关于的对称点.由题设条件,点在的图象上,从而==……………10分当时,,因此在区间上的最大值为……………………13分解法二:因区间关于x=1的对称区间为,且与的图象关于x=1对称,故在上的最大值为在上的最大值……………………10分由(Ⅰ)知=,当时,因此在上的最大值为……………………13分19.解:如图,甲船在C处追上乙船。设乙船行驶速度是v,则甲船行驶速度AB是.设甲、乙两船到C处的时间都为t…………2分则在△ABC中由余弦定理可知,…………5分即,解得…………9分所以…………12分答:甲船应取北偏东的方向去追乙,此时乙船行驶a海里。…………13分20.解:(1)∵=1(n∈N*)∴=1两式相减:∴………………3分∴{}是公比为的等比数列…………………6分(2)解法一:当n=1时,,∴∴……………………7分∵∴………………8分∴……相加:+…+………………10分即:…+=∴………………12分……
立即下载