强化训练福建厦门市湖滨中学数学九年级下册锐角三角函数章节测评试卷.docx
上传人:努力****弘毅 上传时间:2024-09-12 格式:DOCX 页数:9 大小:317KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

强化训练福建厦门市湖滨中学数学九年级下册锐角三角函数章节测评试卷.docx

强化训练福建厦门市湖滨中学数学九年级下册锐角三角函数章节测评试卷.docx

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

福建厦门市湖滨中学数学九年级下册锐角三角函数章节测评考试时间:90分钟;命题人:校数学教研室考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、如图,琪琪一家驾车从地出发,沿着北偏东的方向行驶,到达地后沿着南偏东的方向行驶来到地,且地恰好位于地正东方向上,则下列说法正确的是()A.地在地的北偏西方向上B.地在地的南偏西方向上C.D.2、边长都为4的正方形ABCD和正EFG如图放置,AB与EF在一条直线上,点A与点F重合,现将EFG沿AB方向以每秒1个单位长度的速度匀速运动,当点F与点B重合时停止,在这个运动过程中,正方形ABCD和EFG重合部分的面积S与运动时间t的函数图象大致是()A.B.C.D.3、如图,小王在高台上的点A处测得塔底点C的俯角为α,塔顶点D的仰角为β,已知塔的水平距离AB=a,则此时塔高CD的长为()A.asinα+asinβB.atanα+atanβC.D.4、如图,在扇形AOB中,∠AOB=90°,以点A为圆心,OA的长为半径作交于点C,若OA=2,则阴影部分的面积为()A.B.C.D.5、△ABC中,tanA=1,cosB=,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.锐角三角形6、如图,△ABC的顶点在正方形网格的格点上,则cos∠ACB的值为()A.B.C.D.7、如图,在的正方形网格中,每个小正方形的边长均为1,已知的顶点位于正方形网格的格点上,且,则满足条件的是()A.B.C.D.8、如图,点为边上的任意一点,作于点,于点,下列用线段比表示的值,正确的是()A.B.C.D.9、计算的值等于()A.B.1C.3D.10、如图,为测量小明家所住楼房的楼高,小明从楼底A出发先沿水平方向向左行走到达点C,再沿坡度的斜坡行走104米到达点D,在D处小明测得楼底点A处的俯角为,楼顶最高处B的仰角为,所在的直线垂直于地面,点A、B、C、D在同一平面内,则的高度约为()米.(参考数据:,,,,,)A.104B.106C.108D.110第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题3分,共计30分)1、如图,沿AE折叠矩形纸片,使点D落在BC边的点F处.已知,,则的值为_____.2、如图,为了测量河宽(假设河的两岸平行),在河的彼岸选择一点,点看点仰角为,点看点仰角为,若,则河宽为________(结果保留根号).3、如图,小明沿着坡度的坡面由到直行走了13米时,他上升的高度_______米.4、如图所示,某商场要在一楼和二楼之间搭建扶梯,已知一楼与二楼之间的地面高度差为米,扶梯的坡度,则扶梯的长度为_________米.5、如图,在ABC中,∠C=90°,BD平分∠ABC交AC于点D,DE⊥AB于点E,AE=6,cosA=.(1)CD=___;(2)tan∠DBC=___.6、=_______.7、图是由边长相同的小正方形组成的网格,A,B,P,Q四点均在正方形网格的格点上,线段AB,PQ相交于点E,则tan∠AEP=_____.8、如图,四个小正方形的边长都是1,若以O为圆心,OG为半径作弧分别交AB,CD于点E,F,则弧EF的长是_________.9、如图,直线yx+b与y轴交于点A,与双曲线y在第三象限交于B、C两点,且AB•AC=16.下列等边三角形△OD1E1,△E1D2E2,△E2D3E3,…的边OE1,E1E2,E2E3,…在x轴上,顶点D1,D2,D3,…在该双曲线第一象限的分支上,则k=________,前25个等边三角形的周长之和为______.10、如图,正六边形的边长为2,以为圆心,的长为半径画弧,得,连接,,则图中阴影部分的面积为________.三、解答题(5小题,每小题10分,共计50分)1、抛物线与轴相交于两点(点在点左侧),与轴交于点,其顶点的纵坐标为4.(1)求该抛物线的表达式;(2)求的正切值;(3)点在线段的延长线上,且,求的长.2、如图,在Rt△ABC中,∠BAC=90°,点E是BC的中点,AD⊥BC,垂足为点D,已知AB=20,;求:(1)求线段AE的长;(2)求cos∠DAE的值.3、如图
立即下载