如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
《三角形的面积》数学教学反思《三角形的面积》数学教学反思作为一名人民老师,课堂教学是重要的工作之一,写教学反思可以快速提升我们的教学能力,如何把教学反思做到重点突出呢?下面是小编为大家整理的《三角形的面积》数学教学反思,希望对大家有所帮助。《三角形的面积》数学教学反思1本节课主要是针对学生学习了三角形面积计算后安排的练习课。在本节课的练习中发现了一些问题。学生对三角形面积计算掌握情况比较好,知道求三角形面积需要知道底和高,也知道要除以2。但在具体的解决实际问题方面掌握情况不理想。比如说利用三角形和平行四边形的关系解决问题,学生在理解和具体运用时有一定的困难。从这也反映了学生对基本概念还是不够清晰,综合运用能力较差。另外,学生动手画图的能力也不理想。针对这些问题,觉得要从两个方面入手:一是需要通过各种形式的练习进行强化;二是在进行概念教学时要加大教学的力度,尤其是在学生较难理解的`地方,要结合具体的教学内容采取各种形式进行强化,加深学生的理解和掌握。求三角形的面积,高和底必须是相对应的,这一点,应该作为练习的重点。练习设计得很好,出示了几个三角形,告诉了底和高的数据,其中有一个三角形已知的数据不是对应的底和高,可以让学生把得出的三角形面积公式应用在练习中。学生对于最后一个人图形大多得到了答案,老师再组织学生讨论,学生恍然大悟,连称上当。对于直角三角形,两条直角边就可以作为底和高。在学生的思维中,斜边才是底,这应该是由于惯性,在这一知识点上,老师也应该设计一些练习,突破难点。《三角形的面积》数学教学反思2本节课内容是在平行四边形面积计算的基础上进行教学的,主要是引导学生通过三角形面积公式的推导去理解和掌握三角形的面积计算公式。根据新课程中的新理念要求,教学应该由原来“教学活动”转化成为“学习活动”,引导学生学会学习。我学得本节课好的方面有以下几点:一、小组合作动手操作在教学中,让学生动手操作,分别将三组两个完全一样的三角形拼成一个平行四边形,并比较每个三角形与拼成的平行四边形各部分间的联系,同时在操作中向学生渗透旋转、平移的方法,让学生体验和感知三角形面积公式的推导过程。在这个过程中,学生们表现出了浓厚兴趣,积极性高,个个都很投入地动手操作,极大调动了学生思维活动,学生真正成为了学习的主体。二、引导学生发现问题、思考问题,培养合作精神。在这节课中,探讨平行四边形面积公式与三角形面积公式有何不同?三角形面积公式中的“除以2”是怎么来的?在探讨这个问题时,今后可采用小组讨论的方式,在讨论问题、解决问题,教师不能包办。加强小组讨论,既可培养学生的合作精神,又可活跃课堂氛围。三、应用公式解决实际问题。本节课充分让学生去解决生活当中的实际问题,如:“求交通标志的面积和红领巾的.面积”。让学生体验数学知识在生活当中的重要性。四、不足之处有以下几点:1、练习题应出些拓展练习题开发学生数学思维,还应多补充一些生活中的实例,使学生尝到应用知识的快乐。2、小组合作时间的时间过短,没有充分利用好小组合作的作用。3、引到不够到位,教学方式不足。例如学生在回问题时,没能有效地引导学生归纳知识以培养学生的数学表达能力和数学语言。《三角形的面积》数学教学反思3在这堂课中,我根据教学知识结构、特点、教学任务和教学目标,创设了在操作中学,研讨交流中学、探究发现中学等自主学习方法与活动。使学生在拼一拼,摆一摆等实践活动中尝试失败与成功,在研讨交流、聆听、评价中自主学习,和谐发展。本节课中,尽管要解决的问题具有挑战性,探究的过程也有一定的难度,但是由于将解决三角形面积计算(新问题)置于已学图形面积计算(旧知识)这个“背景”之中,学生已有的知识经验被“激活”,因此就能够在磕磕碰碰的探索中主动完成认知的建构,把直角三角形、钝角三角形的面积计算,分别同化到已有的长(正)方形、平行四边形面积计算的知识结构中去。具体做法如下:1、这节课我采用了通过实践操作组织教学,通过大胆放手,让学生在猜、拼、想、议中学习数学,在学生动口、动手、动脑中研究数学,在自主、自由中“发展”数学。2、培养实践能力:动手操作的过程,是学生手、眼、脑等多种感官协同活动的过程,让学生多种感官参与学习活动,不仅能使学生学得生动活泼,而且对所学知识能理解得更深刻,记忆得更牢固,还有利于发展学生的思维,培养学生的创新精神和实践能力。本节课在教学思路上是淡化教师教的痕迹,突出学生学的过程。让学生自己去发现和概括三角形的面积公式,使学生在拼的过程中体验学习的乐趣。为了达到这一目的,先让学生独立操作,分组合作探究,从不同的角度进一步验证得出结论,初步概括出三角形的面积公式,这样采用了拼一拼、操作讨论的方法,找到了三角形如何转换成长方形、正方形、平行四边形的方法,为图形之间的关系架设了桥梁,使知识融会贯通。如果把推导