四次Pythagorean Hodograph速端曲线的构造的综述报告.docx
上传人:快乐****蜜蜂 上传时间:2024-09-13 格式:DOCX 页数:3 大小:10KB 金币:5 举报 版权申诉
预览加载中,请您耐心等待几秒...

四次Pythagorean Hodograph速端曲线的构造的综述报告.docx

四次PythagoreanHodograph速端曲线的构造的综述报告.docx

预览

在线预览结束,喜欢就下载吧,查找使用更方便

5 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

四次PythagoreanHodograph速端曲线的构造的综述报告PythagoreanHodographcurves(PHcurves)areafamilyofplanarcurvesthathavebeenwidelystudiedoverthepastfewdecadesduetotheirinterestingandusefulproperties.Inthisreport,wewilldiscusstheconstructionofPHcurvesandfocusonthefourmostwell-knowntypesofPHcurves:theClothoid,EulerSpiral,CornuSpiral,andGeronoLemniscate.PHcurvesarecurveswhosecurvatureandtorsionarebothproportionaltothearclength.Thispropertymakesthesecurvesidealformanyapplications,includingmotionplanning,robotics,andcomputergraphics.Inaddition,PHcurveshaveseveralotherusefulandinterestingproperties,suchastheirabilitytoconnecttwopointswithasmoothtransitioninbothpositionandorientation.TheconstructionofPHcurvesinvolvessolvingasystemofdifferentialequations.Thesystemisderivedfromthefundamentaltheoremofalgebrathatstatesthatapolynomialofdegreenhasnroots.InthecaseofPHcurves,thepolynomialinquestionisthethird-degreepolynomialthatdescribesthecurvatureofthecurve.ThefirsttypeofPHcurvewewilldiscussistheClothoid,alsoknownastheEulerSpiral.Thiscurvehasaconstantrateofchangeofcurvatureandisusedinhighwayengineeringtodesigncurvesthatprovideasmoothtransitionfordrivers.Thecurveisdefinedbythedifferentialequation:y''(s)=k(s)x'(s)wherek(s)isthecurvatureofthecurveatarclengths.Thesolutiontothisequationisgivenby:x(s)=cos(θ(s))y(s)=sin(θ(s))whereθ(s)=1/2∫0^sk(t)dt.ThesecondtypeofPHcurveistheEulerSpiral.Thiscurvehasaconstantrateofchangeofcurvatureandisusedinroboticsandanimationtocreatesmoothmotions.Thecurveisdefinedbythedifferentialequation:y''(s)+k^2(s)y(s)=0wherek(s)isthecurvatureofthecurveatarclengths.Thesolutiontothisequationisgivenby:x(s)=∫0^scos(∫0^tk(τ)dτ)dty(s)=∫0^ssin(∫0^tk(τ)dτ)dtThethirdtypeofPHcurveistheCornuSpiral,alsoknownastheFresnelIntegralCurve.Thiscurveisusedinopticstodescribethediffractionpatterngeneratedbyaslit.Thecurveisdefinedbythedifferentialequation:y''(s)+x''(s)=0wherex(s)andy(s)arethecoordinatesofthecurveatarclengths.ThesolutiontothisequationisgivenbytheFresnelintegrals:x(s)=∫