专题对点练习湖南临湘市第二中学数学九年级下册锐角三角函数重点解析试题(含解析).docx
上传人:邻家****文章 上传时间:2024-09-12 格式:DOCX 页数:7 大小:219KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

专题对点练习湖南临湘市第二中学数学九年级下册锐角三角函数重点解析试题(含解析).docx

专题对点练习湖南临湘市第二中学数学九年级下册锐角三角函数重点解析试题(含解析).docx

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

湖南临湘市第二中学数学九年级下册锐角三角函数重点解析考试时间:90分钟;命题人:校数学教研室考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、的值为()A.1B.2C.D.2、如图,在△ABC中,∠C=90°,BC=1,AB=,则下列三角函数值正确的是()A.sinA=B.tanA=2C.cosB=2D.sinB=3、如图,△ABC的顶点在正方形网格的格点上,则cos∠ACB的值为()A.B.C.D.4、如图,在Rt△ABC中,∠C=90°,,BC=1,以下正确的是()A.B.C.D.5、如图,AC是电杆AB的一根拉线,测得米,,则拉线AC的长为()A.米B.6sin52°米C.米D.米6、如图,一辆小车沿斜坡向上行驶米,小车上升的高度米,则斜坡的坡度是()A.:B.:C.:D.:7、△ABC中,tanA=1,cosB=,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.锐角三角形8、如图,小王在高台上的点A处测得塔底点C的俯角为α,塔顶点D的仰角为β,已知塔的水平距离AB=a,则此时塔高CD的长为()A.asinα+asinβB.atanα+atanβC.D.9、如图,E是正方形ABCD边AB的中点,连接CE,过点B作BH⊥CE于F,交AC于G,交AD于H,下列说法:①;②点F是GB的中点;③;④S△AHG=S△ABC.其中正确的结论的序号是()A.①②③B.①③C.②④D.①③④10、如图,在的正方形网格中,每个小正方形的边长均为1,已知的顶点位于正方形网格的格点上,且,则满足条件的是()A.B.C.D.第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题3分,共计30分)1、在△ABC中,(2cosA﹣)2+|1﹣tanB|=0,则△ABC一定是:_____.2、如图所示,某商场要在一楼和二楼之间搭建扶梯,已知一楼与二楼之间的地面高度差为米,扶梯的坡度,则扶梯的长度为_________米.3、在中,,,以BC为斜边作等腰,若,则BC边的长为______.4、如图公路桥离地面的高度AC为6米,引桥AB的水平宽度BC为24米,为降低坡度,现决定将引桥坡面改为AD,使其坡度为1:6,则BD的长____.5、计算的结果为______.6、如图,矩形ABCD中,AB=4,AE=AD,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若F为CD中点,则BC的长为_____.7、在正方形ABCD中,AB=2,点E是BC边的中点,连接DE,延长EC至点F,使得EF=DE,过点F作FG⊥DE,分别交CD、AB于N、G两点,连接CM、EG、EN,下列正确的是______.①tan∠GFB=.②MN=NC;③.④S四边形GBEM=.8、计算:______.9、正八边形的半径为6,则正八边形的面积为________.10、如图,正方形ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连接GF,给出下列结论:①∠AGD=110.5;②2tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BF=OF;⑥S△OGF=1,则正方形ABCD的面积是12+8,其中正确的是_____.(只填写序号)三、解答题(5小题,每小题10分,共计50分)1、如图,AB是⊙O的直径,弦CD⊥AB与点E,点P在⊙O上,∠1=∠C,(1)求证:CB∥PD;(2)若BC=6,sinP=,求⊙O的直径.2、如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,以CD为直径的⊙O分别交AC,BC于点E,F两点,过点F作FG⊥AB于点G.(1)求证:FG是⊙O的切线;(2)若AC=3,CD=2.5,求FG的长.3、在中,,,为锐角且.(1)求的度数;(2)求的正切值.4、计算:•tan60°.5、抛物线与轴相交于两点(点在点左侧),与轴交于点,其顶点的纵坐标为4.(1)求该抛物线的表达式;(2)求的正切值;(3)点在线段的延长线上,且,求的长.
立即下载