九年级上册数学寒假作业答案(多篇).docx
上传人:lj****88 上传时间:2024-09-13 格式:DOCX 页数:15 大小:16KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

九年级上册数学寒假作业答案(多篇).docx

九年级上册数学寒假作业答案(多篇).docx

预览

免费试读已结束,剩余 5 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

九年级上册数学寒假作业答案(多篇)[寄语]九年级上册数学寒假作业答案(多篇)为的会员投稿推荐,但愿对你的学习工作带来帮助。初三数学寒假作业答案篇一一、选择题:ACDACABB二、填空题:9.a,a10.211.1012.π13.0三、解答题:17、(1)x1=3,x2=1.(2)x1=12,x2=-11.18、(6分)5.19、(6分)解:(1)设方程的两根为x1,x2则△=[-(k+1)]2-4(k2+1)=2k-3,∵方程有两个实数根,∴△≥0,即2k-3≥0,∴k≥。(2)由题意得:,又∵x12+x22=5,即(x1+x2)2-2x1x2=5,(k+1)2-2(k2+1)=5,整理得k2+4k-12=0,解得k=2或k=-6(舍去),∴k的值为2.20、(6分)解:(1)第二周的销售量为:400+100x=400+100×2=600.总利润为:200×(10-6)+(8-6)×600+200(4-6)=1600.答:当单价降低2元时,第二周的销售量为600和售完这批面具的总利润1600;(2)由题意得出:200×(10-6)+(10-x-6)(400+100x)+(4-6)[(1000-200)-(400+100x)]=1300,整理得:x2-2x-3=0,解得:x1=3;x2=-1(舍去),∴10-3=7(元)。答:第二周的销售价格为7元。21、(6分)解:(1)把甲组的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙组成绩中10出现了4次,出现的次数最多,则乙组成绩的众数是10分;故答案为:9.5,10;(2)乙组的平均成绩是:(10×4+8×2+7+9×3)=9,则方差是:[4×(10-9)2+2×(8-9)2+(7-9)2+3×(9-9)2]=1;(3)∵甲组成绩的方差是1.4,乙组成绩的方差是1,∴选择乙组代表八(5)班参加学校比赛。故答案为乙。22、(6分)解:(1)∵DH‖AB,∴∠BHD=∠ABC=90°,∴△ABC∽△DHC,∴=3,∴CH=1,BH=BC+CH,在Rt△BHD中,cos∠HBD=,∴BD•cos∠HBD=BH=4.(2)∵∠CBD=∠A,∠ABC=∠BHD,∴△ABC∽△BHD,∴,∵△ABC∽△DHC,∴,∴AB=3DH,∴,解得DH=2,∴AB=3DH=3×2=6,即AB的长是6.23、(8分)解:作PE⊥OB于点E,PF⊥CO于点F,在Rt△AOC中,AO=100,∠CAO=60°,∴CO=AO•tan60°=100(米)。设PE=x米,∵tan∠PAB==,∴AE=2x.在Rt△PCF中,∠CPF=45°,CF=100-x,PF=OA+AE=100+2x,∵PF=CF,∴100+2x=100-x,解得x=(米)。答:电视塔OC高为100米,点P的铅直高度为(米)。24、(8分)证明:(1)∵AD与△ABC的外接圆⊙O恰好相切于点A,∴∠ABE=∠DAE,又∠EAC=∠EBC,∴∠DAC=∠ABC,∵AD‖BC,∴∠DAC=∠ACB,∴∠ABC=∠ACB,∴AB=AC;(2)作AF⊥CD于F,∵四边形ABCE是圆内接四边形,∴∠ABC=∠AEF,又∠ABC=∠ACB,∴∠AEF=∠ACB,又∠AEB=∠ACB,∴∠AEH=∠AEF,在△AEH和△AEF中,,∴△AEH≌△AEF,∴EH=EF,∴CE+EH=CF,在△ABH和△ACF中,,∴△ABH≌△ACF,∴BH=CF=CE+EH.25、(10分)解:(1)∵AH⊥BE,∠ABE=45°,∴AP=BP=AB=2,∵AF,BE是△ABC的中线,∴EF‖AB,EF=AB=,∴∠PFE=∠PEF=45°,∴PE=PF=1,在Rt△FPB和Rt△PEA中,AE=BF==,∴AC=BC=2,∴a=b=2,如图2,连接EF,同理可得:EF=×4=2,∵EF‖AB,∴△PEF~△ABP,∴,在Rt△ABP中,AB=4,∠ABP=30°,∴AP=2,PB=2,∴PF=1,PE=,在Rt△APE和Rt△BPF中,AE=,BF=,∴a=2,b=2,故答案为:2,2,2,2;(2)猜想:a2+b2=5c2,如图3,连接EF,设∠ABP=α,∴AP=csinα,PB=ccosα,由(1)同理可得,PF=PA=,PE==,AE2=AP2+PE2=c2sin2α+,BF2=PB2+PF2=+c2cos2α,∴=c2sin2α+,=+c2cos2α,∴+=+c2cos2α+c2sin2α+,∴a2+b2=5c2;(3)如图4,连接AC,EF交于H,AC与BE交于点Q,设BE与AF的交点为P,∵点E、G分别是AD,CD的中点,∴EG‖AC,∵BE⊥EG,∴B