如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
多彩的网格问题所谓网格中的形似三角形就是在正方形的网格中寻找三角形相似的问题.这类问题是近年来全国各地中考的一个热点和亮点,试题的特点主要是以用勾股定理等知识计算三角形的边长,再加上正方形的对角线形成的特殊角,要求能从正方形网格中挖掘出条件,灵活运用相似三角形的性质与判定解决问题在正方形网格中,它有两个主要特征:(1)任何格点之间的线段都是某正方形或长方形的边或对角线,所以格点间的任何线段长度都能求得;(2)利用正方形的性质,我们很容易知道一些特殊的角,如450、900、1350,便一目了然.利用这些特征就可以设计出很多有趣的、具有操作性的探究性的题目来,特别是在研究相似问题时具有独到效果.在安徽省近年来的中考题中,网格作图题已经成为安徽中考必考试题之一.类型1网格中函数图形问题1.如图,在△ABC中,∠BAC=90°,AB=AC=3,点D在BC上且BD=2CD,E,F分别在AB,AC上运动且始终保持∠EDF=45°,设BE=x,CF=y,则y与x之间的函数关系用图象表示为:()A.B.C.D.【解答】:∵∠BAC=90°,AB=AC=3,∴∠B=∠C=45°,BC=3.∴∠BDE+∠BED=180°﹣∠B=135°,∵∠EDF=45°,∴∠BDE+∠CDF=180°﹣∠EDF=135°,∴∠BED=∠CDF,∴△BED∽△CDF,∴=.∵BD=2CD,∴BD=BC=2,CD=BC=,∴=,∴y=,故B、C错误;∵E,F分别在AB,AC上运动,∴0<x≤3,0<y≤3,故A错误.故选D.2.如图,若抛物线y=﹣x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k,则反比例函数y=(x>0)的图象是()A.B.C.D.【解答】:抛物线y=﹣x2+3,当y=0时,x=±;当x=0时,y=3,则抛物线y=﹣x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)为(﹣1,1),(0,1),(0,2),(1,1);共有4个,∴k=4;故选:D.类型2网格中函数相似三角形判定问题3.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.【解答】:在△ABC中,∠ACB=135°,AC=2,BC=,在A、C、D选项中的三角形都没有135°,而在B选项中,三角形的钝角为135°,它的两边分别为1和,因为=,所以B选项中的三角形与△ABC相似.故选B.4.如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC∽△EPD,则点P所在的格点为P3.【解答】:∵∠BAC=∠PED,而=,∴=时,△ABC∽△EPD,∵DE=4,∴EP=6,∴点P落在P3处.故答案为:P3.5.如图,在正方形网格上有6个斜三角形:①△ABC,②△CDB,③△DEB,④△FBG,⑤△HGF,⑥△EKF请在三角形②~⑥中,找出与①相似的三角形的序号是(把你认为正确的一个三角形的序号填上)并证明你的结论.【解答】解:设第个小正方形的边长为1,则△ABC的各边长分别为1、、.则②△BCD的各边长分别为1、、2;③△BDE的各边长分别为2、2、2(为△ABC对应各边长的2倍);④△BFG的各边长分别为5、、(为△ABC对应各边长的倍);⑤△FGH的各边长分别为2、、(为△ABC对应各边长的倍);⑥△EFK的各边长分别为3、、.根据三组对应边的比相等的两个三角形相似得到与三角形①相似的是③④⑤.故答案为:③④⑤.类型3网格中函数位似变换问题6.如图,在5×6的网格中,每个小正方形边长均为1,△ABC的顶点均为格点,D为AB中点,以点D为位似中心,相似比为2,将△ABC放大,得到△A′B′C′,则BB′=()A.B.C.D.或【解答】解:如图,∵相似比为2,∴BB′==,BB″==,故选D.7.如图,在平面直角坐标系中,已知点O(0,0),A(6,0),B(0,8),以某点为位似中心,作出与△AOB的位似比为k的位似△CDE,则位似中心的坐标和k的值分别为()A.(0,0),2B.(2,2),C.(2,2),2D.(1,1),【解答】:如图所示:位似中心F的坐标为:(2,2),k的值为:=.故选:B.类型4网格背景下的作几何图形问题。8.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)将△ABC向上平移3个单位得到△A1B1C1,请画出△A1B1C1;(2)请画一个格点△A2B2C2,使△A2B2C2∽△ABC,且相似比为2.【解答】解:(1)如图所示:△A1B1C1即为所求;(2)