如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
正比例教学反思正比例教学反思15篇作为一名到岗不久的老师,我们需要很强的课堂教学能力,通过教学反思可以快速积累我们的教学经验,那么教学反思应该怎么写才合适呢?以下是小编收集整理的正比例教学反思,仅供参考,希望能够帮助到大家。正比例教学反思1“正比例的意义”是一个对于小学生来说非常抽象的数学概念性知识。昨天,我试教了这一课,在教学中调动了学生的生活经验,用日常概念来帮助学生理解数学概念,帮助学生初步感知,完成对新知的建构。然后,通过例题指导学生主动概括出正比例的本质特征,学生的理解深刻,准确。由于学生在上学期已经学过比的意义、比的化简与比的应用。在上一节课也体会了生活中存在的变量之间的关系,这些都为学生学习正比例奠定了基础,正比例关系是数学中比较重要的一种数量关系,它也为学习反比例进行铺垫,同时,学生理解正比例的意义往往比较困难。为此,我密切联系学生已有的生活经验和学习经验,设计了系列情境,让学生体会生活中存在大量相关联的量,它们之间的关系有着共同之处,从而引发学生的讨论和思考,引导学生认识成正比例的量以及正比例在生活中的广泛存在。我首先给学生提共了正方形的周长与边长和面积与边长的变化关系。让学生独立填表、观察,然后与同伴交流,通过表格、图象、表达式的比较,体会到虽然正方形的周长和面积都随边长的`增加而增加,但正方形的周长与边长、面积与边长的变化规律并不相同。同时,学生将初步感知“在变化过程中,正方形的周长与边长的比值一定”,为认识正比例奠定基础。同时,借助图形直观、动态地体现了正方形的周长与边长“成正比”的过程,为学生后面学习正比例的图象积累经验。接着,我给学生提供第二个情境:当速度一定时,汽车行驶的路程与时间的变化关系。教学时,我先让学生把汽车行驶的时间和路程表填完整,引导学生观察并思考:当时间发生变化时,路程怎样变化第三个情境则是,购买同一种苹果时,应付的钱数与购买的苹果质量之间的关系。通过以上这两个实例,引导学生认识到:路程随时间的变化而变化,在变化的过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。在此基础上,让学生通过比较,概括出以上实例的共同点,引出“正比例”。最后,通过小结、练习让学生总结出判断两种量是否成正比例的依据:1.两种相关联的变量;2.当一种量变化时,另一种量也随着变化;3.这两种量中相对应的两个数的比值一定。正比例教学反思2正比例意义这一内容是在教学完比和比例的知识的基础上进行教学的,着重使学生理解正比例的意义。从内容上看,“成正比例的量”这一内容,在整个小学阶段是一个较抽象的概念,他不仅要让学生理解其意义,还要学会判断两种是否是成正比例的量,同时还要理解用字母公式来表示正比例关系,要渗透给学生一些函数的思想,为以后初中学习打下基础。基于以上分析,我个人认为正比例意义的教学要抓住以下几点来进行教学:一种量变化、另一种量也随着变化——一种量增加、另一种量也随着增加,一种量减少,另一种量也随着减少——这两种量中相对应的两个数的比值相同——这样的两个变量成正比例。根据教材和内容的特点,在教学中我是这样设计的:先出示了一个时间和路程两种量的变化情况表格,然后引导学生从表格中去发现时间和路程两种量的变化情况,在观察中发现:路程是随着时间的变化而变化的,同时引导学生初步感知成正比例的两种量的变化方向性,即时间增加,路程也随着增加,时间减少,路程也随着减少,这两种量的变化方向相同。进而让学生弄清什么叫“两种相关联”的量。然后我又引导学生发现路程和时间比的比值是一样的,都是50千米。让学生理解相对应的路程和时间的比的比值都是50千米,从而初步突破了正比例关系的第二个难点,即两种量中相对应的两个数的比值一定。由于学生还是第一次接触这一概念,为了进一步让学生理解正比例的意义,之后,我又出示了两个表格,即数量和总价的'变化情况表格、高度和体积变化情况表格,用同样的方法引导学生观察表格,发现三个表格都有共同的特点,即:每个表格中都有两种相关联的量,一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的比值一定。最后,在三个例题学习的基础上总结出成正比例量的意义,把这意义从局部的路程和时间、数量和总价以及高度和体积推广到其他数量之间的关系,从而让学生水到渠成地理解了正比例的意义。然后,老师用例子说明,并且请学生互动找例子,最后让学生学会用字母表示正比例关系式。这堂课对教材中几个概念,在理解上仍存在一些问题。比如,什么样的两种量叫做相关量的两种量,课本上的概念是:一种量变化,另一种量也随着变化。那么一个人的身高和体重算不算两种相关联的量,可以说从一定程度上或多或少有点相关,但是在一定程度上又不相关,比如人到长大以后开始发胖,身高不变,体重变化,这又怎么说呢?正