小学数学《解简易方程》教学反思.docx
上传人:lj****88 上传时间:2024-09-12 格式:DOCX 页数:8 大小:15KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

小学数学《解简易方程》教学反思.docx

小学数学《解简易方程》教学反思.docx

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

小学数学《解简易方程》教学反思小学数学《解简易方程》教学反思作为一名到岗不久的老师,我们要在课堂教学中快速成长,借助教学反思我们可以拓展自己的教学方式,那么什么样的教学反思才是好的呢?以下是小编为大家整理的小学数学《解简易方程》教学反思,欢迎阅读与收藏。小学数学《解简易方程》教学反思1新课程的改革,使得小学的知识要体现与初中更加的接轨,五年级上册第四单元“解简易方程”中进行了一次新的改革。能过本次活动我课下反思如下:1、在本课开始出示天平,提出“怎样才能使得天平左边只剩下X,而保持天平平衡”这一问题,引导学生由天平保持平衡的变化规律,推出议程两过保持相等的变换方法,这样的过程做到了“寓知识于游戏,化抽象为形象,变空没为具体”,使学生的学习具有形象性、趣味性。2、如果我在课前准备一些“小蛋珠”来代替演示砝码,学生会更直观的明白方程保持不变与等式一样的规律了。要求方程的解法要根据天平的原理来进行解答,也就是说要通过等式的性质来解方程,这一方法虽然说让方程的解法找到了本质的东西,但是也让我感到了许多困惑:1、从教材的编排上,整体难度下降,有意避开了,形如:45-X=23等类型的`题目。把用等式解决的方法单一化了。在实际教学中我们要求学生较熟练地利用等式的方法来解方程,但用这样的方法来解方程之后,书本不再出现X前面是减号或除号的方程题了,学生在列方程解实际应用时,我们并不能刻意地强调学生不会列出X在后面的方程,我们更头痛于学生的实际解答能力。在实际的方程应用中,这种情况是不可避免的。很显然这存在着目前的局限性了。对于好的学生来说,我们会让他们尝试接受--解答X在后面这类方程的解答方法,就是等号二边同时加上X,再左右换位置,再二边减一个数,真有点麻烦了。而且有的学生还很难掌握这样方法。2、内容看似少实际教得多。难度下降后,看起来教师要教的内容变得少了,可以实际上反而是多了。教师要给他们补充X前面是除号或减号的方程的解法。要教他们列方程时怎么避免X前面是除号或减号的方程的出现等等。小学数学《解简易方程》教学反思2《解简易方程》教学反思数学课程标准(实验稿)》改变了小学阶段解方程方法的教学要求,采用了等式的性质来教学解方程。现将解方程的新旧方法举例如下:老方法:x+4=20x=20-4依据运算之间的关系:一个加数等于和减另一个加数。新方法:x+4=20x+4-4=20-4依据等式的基本性质1:等式两边加上或减去相等的数,等式不变。改革的原因(摘自教学参考书):新教材编写者如此说明:长期以来,小学教学简易方程时,方程变形的依据总是加减运算的关系或乘除运算之间的关系,这实际上是用算术的思路求未知数。到了中学又要另起炉灶,引入等式的基本性质或方程的同解原理来教学解方程。小学的思路及其算法掌握得越牢固,对中学代数起步教学的负迁移就越明显。因此,现在根据《标准》的要求,从小学起就引入等式的基本性质,并以此为基础导出解方程的方法。这就较为彻底地避免了同一内容两种思路、两种算理解释的现象,有利于加强中小学数学教学的衔接。从这我们不难看出,为了和中学教学解方程的方法保持一致,是此次改革的主要原因。那么,小学生学这样的方法,实际操作中会出现什么样的情况?这样的'改革有没有什么问题?在我的教学过程中真的出现了问题。1.无法解如a-x=b和ax=b此类的方程新教材认为,利用等式基本性质解方程后,解象x+a=b与x-a=b一类的方程,都可以归结为等式两边同时减去(加上)a;解如ax=b与xa=b一类的方程,都可以归结为等式两边同时除以(乘上)a。这就是所谓相比原来方法,思路更为统一的优越性。然而,它有一个相应的调整措施值得我们注意,那就是它把形如a-x=b和ax=b的方程回避掉了。原因是小学生还没有学习正负数的四则运算,利用等式的基本性质解a-x=b,方程变形的过程及算理解释比较麻烦;而ax=b的方程,因为其本质是分式方程,依据等式的基本性质解需要先去分母,也不适合在小学阶段学习。我认为为了要运用等式基本性质,却回避掉了两类方程,这似乎不妥。更重要的是,回避这两类方程,新教材认为并不影响学生列方程解决实际问题。因为当需要列出形如a-x=b或ax=b的方程时,总是要求学生根据实际问题的数量关系,列成形如x+b=a或bx=a的方程。但我认为,这样的处理方法,有时更会无法避免地直接和方程思想发生矛盾。如3千克梨比5千克桃子贵0.5元。梨每千克2.5元,桃子每千克多少元?合理的做法应是设桃子每千克X元,从顺向思考,列出方程为2.53-5X=0.5。然而,按新教材的编排,因为学生现在不会解这样的方程,所以要根据数量关系,转列成5X+0.5=2.53之类的方程。又如:课本中的爸爸比小明大28岁,小明Х岁,爸爸40岁。很多学生根据爸爸比小明大28岁列出40-Х=28,可是无