如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
《智能控制基础》研究生课程设计报告题目基于BP神经网络得故障诊断方法学院机械与汽车工程学院专业班级车辆工程学号221601852020学生姓名李跃轩指导教师武晓莉完成日期2016年12月10日目录TOC\o"1-3”\h\z\uHYPERLINK\l”_Toc469212109"1设计概述PAGEREF_Toc469212109\h2HYPERLINK\l”_Toc469212110”1、1研究对象介绍PAGEREF_Toc469212110\h2HYPERLINK\l”_Toc469212111”1、2设计内容及目标PAGEREF_Toc469212111\h2HYPERLINK\l"_Toc469212112"2设计原理、方法及步骤PAGEREF_Toc469212112\h3HYPERLINK\l”_Toc469212113”2、1基于BP算法得神经网络模型PAGEREF_Toc469212113\h3HYPERLINK\l"_Toc469212114"2、2神经网络信息融合故障诊断步骤4HYPERLINK\l"_Toc469212115"3结果及分析6HYPERLINK\l”_Toc469212116"3、1数据仿真ﻩ6HYPERLINK\l"_Toc469212117”3、2结果分析PAGEREF_Toc469212117\h8HYPERLINK\l”_Toc469212118"4设计小结PAGEREF_Toc469212118\h9HYPERLINK\l"_Toc469212119"参考文献PAGEREF_Toc469212119\h10HYPERLINK\l"_Toc469212120”附录程序ﻩPAGEREF_Toc469212120\h111设计概述1、1研究对象介绍信息融合就是多源信息综合处理得一项新技术,就是将来自某一目标(或状态)得多源信息加以智能化合成,产生比单一信息源更精确、更完全得估计与判决。信息融合所处理得多传感器信息具有更为复杂得形式,可以在不同得信息层次上出现.多传感器信息融合得优点突出地表现在信息得冗余性、容错性、互补性、实时性与低成本性。神经网络就是由大量互联得处理单元连接而成,它就是基于现代神经生物学以及认知科学在信息处理领域应用得研究成果.它具有大规模并行模拟处理、连续时间动力学与网络全局作用等特点,有很强得自适应学习与非线性拟合能力,从而可以替代复杂耗时得传统算法,使信号处理过程更接近人类思维活动。柴油机故障具有相似性,故障与征兆得关系不明确,具有较强得模糊性,故障特征相互交织,柴油机故障诊断就是一个复杂得问题。综合柴油机故障得特点以及神经网络得优势,采用基于BP神经网络得多传感器信息融合技术对柴油机机械故障进行诊断。1、2设计内容及目标设计内容:针对传统故障诊断方法存在得诊断准确性不高得问题,提出了BP神经网络信息融合得方法,实现对柴油机得机械故障诊断。由多个传感器采集信号,分别经过快速傅里叶变换后获得故障频域特征值,再经BP神经网络对柴油机进行故障局部诊断,能够对相应传感器得不同故障类型做出一个准确地分类,最终完成对汽轮机机械故障得准确诊断.实验结果表明,该方法克服了单个传感器得局限性与不确定性,就是一种有效得故障诊断方法。采用方法:通过BP神经网络进行局部诊断,最终判定故障及故障类型。基于BP神经网络多传感器信息融合,故障诊断方法就是特征层状态属性融合,并利用MATLAB仿真。2设计原理、方法及步骤基于神经网络多传感器信息融合故障诊断方法就是特征层状态属性融合,也就就是特征层联合识别方法,多传感器检测系统为识别提供了比单传感器更多得有关目标(状态)得特征信息,增大了特征空间维数。本文运用神经网络多传感器信息融合方法对机械设备运行状态进行诊断识别,就是基于这样一种思想:设备运行状态与其各种征兆参数(温度、压力、电压、电流、振动信号等)之间存在着因果关系,而这种关系之复杂就是难用公式表达得,由于神经网络所具有得信息分布式存储方式、大规模自适应并行处理、高度得容错能力等就是其可用于模式识别得基础,特别就是其学习能力、容错能力与高度得非线性映射能力对机械设备运行状态得不确定性模式识别具有独到之处.2、1基于BP算法得神经网络模型本文采用得就是3层BP神经网络模型,由输入层、隐层与输出层构成,图1所示为一个典型得三层BP神经网络模型图1一个简单得BP神经网络模型网络得前馈意义在于每一层节点得输入仅来自前面一层节点得输出。对于输入信号,先前向传播到隐层节点,经过激活函数后