勾股定理-培优分类.doc
上传人:戊午****jj 上传时间:2024-09-11 格式:DOC 页数:8 大小:260KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

勾股定理-培优分类.doc

勾股定理-培优分类.doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

勾股定理培优分类勾股定理培优分类勾股定理培优分类勾股定理培优分类精选根据对称求最小值基本模型:已知点A、B为直线m同侧的两个点,请在直线m上找一点M,使得AM+BM有最小值。1、已知边长为4的正三角形ABC上一点E,AE=1,AD⊥BC于D,请在AD上找一点N,使得EN+BN有最小值,并求出最小值。OQTIBbd。533ntIU。2、.已知边长为4的正方形ABCD上一点E,AE=1,请在对角线AC上找一点N,使得EN+BN有最小值,并求出最小值。3、如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,AB=2.试在直线a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB的长度和最短,则此时AM+NB=()Q4KI76T。BjRU5aY。A.6B.8C.10D.124、已知AB=20,DA⊥AB于点A,CB⊥AB于点B,DA=10,CB=5.(1)在AB上找一点E,使EC=ED,并求出EA的长;(2)在AB上找一点F,使FC+FD最小,并求出这个最小值5、如图,在梯形ABCD中,∠C=45°,∠BAD=∠B=90°,AD=3,CD=2,M为BC上一动点,则△AMD周长的最小值为.6、如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AB边上一点,则EM+BM的最小值为.RSIXXH1。T9avLYk。7、如图∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.BH50Nik。s9dNBVo。8.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()Y7e0aqL。w3jMaOK。A.2B.2C.3D.9、在边长为2cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为____________cm3xYGOAH。seaN637。10、在长方形ABCD中,AB=4,BC=8,E为CD边的中点,若P、Q是BC边上的两动点,且PQ=2,当四边形APQE的周长最小时,求BP的长.eKwRcTa。rTJC0vz。几何体展开求最短路径1、如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm,3dm,2dm,A和B是这个台阶两相对的端点,A点有一只昆虫想到B点去吃可口的食物,则昆虫沿着台阶爬到B点的最短路程是多少dm?x6K3tk8。1Ck0cwm。2、如图:一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程.AIsJRs6。mWOuTtR。3、如图,一个高18m,周长5m的圆柱形水塔,现制造一个螺旋形登梯,为了减小坡度,要求登梯绕塔环绕一周半到达顶端,问登梯至少多长?CCFPaWn。KX0VRhy。(建议:拿一张白纸动手操作,你一定会发现其中的奥妙)4、如图,一只蚂蚁从实心长方体的顶点A出发,沿长方体的表面爬到对角顶点C1处(三条棱长如图所示),问怎样走路线最短?最短路线长为多少?yVhrXuV。LKQCHan。如图,圆柱形容器中,高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,求壁虎捕捉蚊子的最短距离。33Y73bC。d6AfNyf。折叠问题1、如图所示,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EF的长。6EAgrMM。0lC3y1q。2、如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处;(1)求证:B'E=BF;(2)设AE=a,AB=b,BF=c,试猜想a、b、c之间的一种关系,并给予证明3、如图,有一张直角三角形纸片,两直角边AC=6cm,BC=8cm,将△ABC折叠,使点B与点A重合,折痕为DE,则CD=。4、如图,折叠长方形ABCD的一边AD,点D落在BC边的D′处,AE是折痕,已知CD=6cm,CD'=2cm,则AD的长为.dLfU6R2。pnGz6QZ。5、如图,在Rt△ABC中,∠ABC=90°,∠C=60°,AC=10,将BC向BA方向翻折过去,使点C落在BA上的点C′,折痕为BE,则EC的长度是()lAWtinW。tDURoAi。A、5B、5-5C、10-5D、5+6、如图,把矩形ABCD沿直线BD向上折叠,使点C落在C′的位置上,已知AB=3,BC=7,求重合部分△EBD的面积。cUVP