北京市大兴区2023届中考数学四模试卷含解析.doc
上传人:海昌****姐淑 上传时间:2024-09-12 格式:DOC 页数:21 大小:1.8MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

北京市大兴区2023届中考数学四模试卷含解析.doc

北京市大兴区2023届中考数学四模试卷含解析.doc

预览

免费试读已结束,剩余 11 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2023年中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知正多边形的一个外角为36°,则该正多边形的边数为().A.12B.10C.8D.62.某公司有11名员工,他们所在部门及相应每人所创年利润如下表所示,已知这11个数据的中位数为1.部门人数每人所创年利润(单位:万元)11938743这11名员工每人所创年利润的众数、平均数分别是A.10,1B.7,8C.1,6.1D.1,63.已知x+=3,则x2+=()A.7B.9C.11D.84.的绝对值是()A.8B.﹣8C.D.﹣5.如图,等边△ABC的边长为4,点D,E分别是BC,AC的中点,动点M从点A向点B匀速运动,同时动点N沿B﹣D﹣E匀速运动,点M,N同时出发且运动速度相同,点M到点B时两点同时停止运动,设点M走过的路程为x,△AMN的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.6.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为()A.B.C.D.7.计算的结果是()A.1B.﹣1C.1﹣xD.8.如图,中,,且,设直线截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的A.B.C.D.9.用配方法解方程x2﹣4x+1=0,配方后所得的方程是()A.(x﹣2)2=3B.(x+2)2=3C.(x﹣2)2=﹣3D.(x+2)2=﹣310.如图,矩形是由三个全等矩形拼成的,与,,,,分别交于点,设,,的面积依次为,,,若,则的值为()A.6B.8C.10D.1211.在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为()A.B.C.D.12.将一副三角板按如图方式摆放,∠1与∠2不一定互补的是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.为迎接五月份全县中考九年级体育测试,小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是_____.14.已知某二次函数图像的最高点是坐标原点,请写出一个符合要求的函数解析式:_______.15.已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是______.16.若点(a,b)在一次函数y=2x-3的图象上,则代数式4a-2b-3的值是__________17.如图,等边三角形ABC内接于⊙O,若⊙O的半径为2,则图中阴影部分的面积等于_______.18.如图,在四边形ABCD中,AC、BD是对角线,AC=AD,BC>AB,AB∥CD,AB=4,BD=2,tan∠BAC=3,则线段BC的长是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知:a是﹣2的相反数,b是﹣2的倒数,则(1)a=_____,b=_____;(2)求代数式a2b+ab的值.20.(6分)先化简,再求值:(﹣1)÷,其中x=1.21.(6分)如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE⊥CD,垂足为点E.(1)求证:直线CE是⊙O的切线.(2)若BC=3,CD=3,求弦AD的长.22.(8分)已知:如图,在□ABCD中,点G为对角线AC的中点,过点G的直线EF分别交边AB、CD于点E、F,过点G的直线MN分别交边AD、BC于点M、N,且∠AGE=∠CGN.(1)求证:四边形ENFM为平行四边形;(2)当四边形ENFM为矩形时,求证:BE=BN.23.(8分)计算:2﹣1+|﹣|++2cos30°24.(10分)在锐角△ABC中,边BC长为18,高AD长为12如图,矩形EFCH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K,求的值;设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的