超疏水材料发展趋势 PPT.ppt
上传人:王子****青蛙 上传时间:2024-09-14 格式:PPT 页数:32 大小:14.2MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

超疏水材料发展趋势 PPT.ppt

超疏水材料发展趋势PPT.ppt

预览

免费试读已结束,剩余 22 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

超疏水材料发展趋势0一、引言引言目前,人们通常用液体在材料表面的接触角来表征材料表面的润湿性。按照水滴在材料表面接触角大小的不同,我们可以将材料进行如下分类:当接触角小于90°时,我们认为这种材料是亲水材料;如果水滴在材料表面的接触角小于5°,那么这种材料是超亲水材料,例如经浓硫酸和双氧水(体积比为7:3)处理过的硅片,水滴在它的上面会立刻铺展开,展示出超亲水的性质;当材料表面接触角大于90°时,我们认为这种材料是疏水材料;如果材料的表面接触角大于150°,滚动接触角小于10°,那么我们认为这种材料是超疏水材料,例如我们前面所提到的荷叶,水滴在其表面的接触角大于150°,不能稳定停留,极易滑落,因而造就了它“出淤泥而不染”的性质。我们研究的重点是超疏水表面。接触角是表征固体表面疏水性优劣的指标之一,通常情况下,在不完全润湿性表面会形成一个冠形液滴,如图所示。当气、液、固三相接触达到平衡时,在三相接触的公共点处作液一气界面的切线,我们把此切线与固一液界面的夹角称为接触角(θ)。如果固体表面的接触角θ<90°,此表面描述为亲水性表面,90°<θ<150°为疏水性表面,150°<θ<175°为超疏水表面,I75°<θ<180°为极端疏水表面,而当θ=180°的表面称之为完全疏水表面。因此,用接触角就能比较直观、方便的来描述固体表面疏水性的优劣。上面所描述的接触角所表征的是水滴在水平面上的表现,而现实中的平面往往不是水平的,更多的是斜面。水滴在倾斜表面上可能滚动或停滞,这种状态可以用滚动角进行表征。所谓滚动角是指液滴在固体表面开始滚动时的临界表面倾斜角度α(如图所示)。若液滴开始滚动的倾斜角越小,表明此表面的超疏水性越好。在倾斜表面,在水滴即将滚落下的临界状态下,水滴前部和尾部形成两个不同的接触角θa和θr。接触角滞后值是这两个角的差值,可以用于表征固体表面所呈现出的亲-疏水状态。液滴的滚动特性随着该接触角的滞后值的上升而减弱。综上所述,固体与液体的相互浸润性的好坏及其所表现出的亲-疏水性是由接触角和滚动角两者共同表征。接触角越大和滚动角越小说明材料表面的疏水性越强。大家应该也有点累了,稍作休息0模板法化学刻蚀法电化学方法化学气相沉积法其他方法四、超疏水材料的应用建筑物表面的污染主要是由于空气中微小颗粒的粘附和雨、雪等的覆盖污染。超疏水材料因其独特的疏水性,在建筑物内外墙、玻璃及金属框架等的防水、防雪和耐沾污等方面均有广泛的应用前景,可大大降低建筑物的清洁及维护成本,使得建筑物能长久保持亮丽的外观。目前,超疏水表面材料在建筑防污染方面的产品主要是涂层及防护液等,如中科赛纳技术有限公司采用纳米合成技术制备的纳米超疏水自清洁玻璃涂层。该涂层一般为无色透明、无毒、无污染牢固度高且具有自清洁、防结冰、抗氧化等功能。德国STO公司同样根据荷叶效应原理开发了有机硅纳米乳胶漆。江苏大学吉海燕、陈刚等采用蚀刻法处理玻璃也制备了超疏水玻璃表面。据实验观察不论是在水面的滑行、跳跃还是快速掠过水黾都既不会滑破水面更不会浸湿腿部。因而也就被美誉为“池塘中的溜冰者”根据这一现象科学家经过论证得出水水黾特殊腿部微纳米结构和水面间形成的“空气垫”阻碍了水黾的浸润,让它们实现了自然界版的“水上漂”。据了解利用新型超疏水材料制成的超级浮力材料河以使船表面具有超疏水性并因此在其表面形成具体版的“空气垫”改变船与水的接触状态防止船体表面被水浸湿进而使其在水中运行的阻力更小提高速度,节省了能源。研究人员表明交通工具的“水上飞”河以有效地提高交通工具的速度节省一定的能源肩可能也会顺势引起交通、能源领域的一次革新。天然气的管道运输因其传输距离远,线路可控设备投入较简单等优势已经成为陆上天然气资源的主要输送方式,但由于天然气中往往含有硫化氢、二氧化碳和水等腐蚀性物质因而管道容易发生均匀腐蚀、坑蚀、电化学腐蚀、冲刷腐蚀等现象。由于管道内壁表面粗糙等原因天然气的传输效率也较低。针对上述问题许多学者在这方面做了很多工作,例如在铝及其合金表面上制备超疏水薄膜使其防腐能力明显提高碳纳米管粘接在基材铝板表面以形成复合结构表面,然后用聚四氟乙烯修饰该复合表面上以形成一层超疏水PTFE膜。在国外许多铝、铁、碳钢等金属以及合金表面都会用超疏水膜来修饰,以提高其防腐蚀性。该方法可有效地运用在如管道气体、液体运输减阻等多方面对降低运输能耗提高输送效率有很大帮助未来有较大的开发应用空间。采用静电纺丝法或者在材料表面进行处理可制备具有超疏水性的各种微纳米结构纤维。这类材料因具有超疏水性能,可用于制造防水薄膜、疏水滤膜以及防水透气薄膜等,或者使织物因疏水性能而具有防水、防污染、防灰尘等新功能。如美国NANOTEX公司采用纳米技术开发的Nano-care功能型面料;德国巴斯夫(BASF)公司也将荷叶效