综合解析福建厦门市翔安第一中学数学九年级下册锐角三角函数章节测评试卷(详解版).docx
上传人:雅云****彩妍 上传时间:2024-09-12 格式:DOCX 页数:8 大小:246KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

综合解析福建厦门市翔安第一中学数学九年级下册锐角三角函数章节测评试卷(详解版).docx

综合解析福建厦门市翔安第一中学数学九年级下册锐角三角函数章节测评试卷(详解版).docx

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

福建厦门市翔安第一中学数学九年级下册锐角三角函数章节测评考试时间:90分钟;命题人:校数学教研室考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、如图,在中,,点D为AB边的中点,连接CD,若,,则的值为()A.B.C.D.2、如图,为测量小明家所住楼房的楼高,小明从楼底A出发先沿水平方向向左行走到达点C,再沿坡度的斜坡行走104米到达点D,在D处小明测得楼底点A处的俯角为,楼顶最高处B的仰角为,所在的直线垂直于地面,点A、B、C、D在同一平面内,则的高度约为()米.(参考数据:,,,,,)A.104B.106C.108D.1103、如图,在ABC中,∠C=90°,∠ABC=30°,D是AC的中点,则tan∠DBC的值是()A.B.C.D.4、某山坡坡面的坡度,小刚沿此山坡向上前进了米,小刚上升了()A.米B.米C.米D.米5、三角形在正方形网格纸中的位置如图所示,则tanα的值是()A.12B.43C.35D.456、如图,在Rt△ABC中,∠ABC=90°,BD是AC边上的高,则下列选项中不能表示tanA的是()A.B.C.D.7、一个物体从A点出发,沿坡度为1:7的斜坡向上直线运动到B,AB=30米时,物体升高()米.A.B.3C.D.以上的答案都不对8、如图,△ABC的顶点在正方形网格的格点上,则cos∠ACB的值为()A.B.C.D.9、在正方形网格中,ABC的位置如图所示,点A、B、C均在格点上,则cosB的值为()A.B.C.D.10、如图所示,九(二)班的同学准备在坡角为α的河堤上栽树,要求相邻两棵树之间的水平距离为8m,那么这两棵树在坡面上的距离AB为()A.8mB.mC.8sinamD.m第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题3分,共计30分)1、在矩形ABCD中,BC=3AB,点P在直线BC上,且PC=AB,则∠APB的正切值为__________________.2、如图所示为4×4的网格,每个小正方形的边长均为1,则四边形AECF的面积为________;tan∠FAE=_______3、如图,小明家附近有一观光塔CD,他发现当光线角度变化时,观光塔的影子在地面上的长度也发生变化.经测量发现,当小明站在点A处时,塔顶D的仰角为37°,他往前再走5米到达点B(点A,B,C在同一直线上),塔顶D的仰角为53°,则观光塔CD的高度约为_____.(精确到0.1米,参考数值:tan37°≈,tan53°≈)4、如果斜坡的坡度为1∶3,斜坡高为4米,则此斜坡的长为___________米5、在半径为1的⊙O中,弦AB、AC分别是和,则∠BAC的度数是________.6、如图,在中,是斜边上的中线,点是直线左侧一点,联结,若,则的值为______.7、若点在反比例函数的图象上,则的值为__________.8、当0≤θ≤α时,将二次函数y=﹣x2x(0≤x)的图象G,绕原点逆时针旋转θ得到图形G均是某个函数的图象,则α的最大值为_____.9、如图,在平面直角坐标系xOy中,点B在x轴正半轴上,点D在y轴正半轴上,⊙C经过A,B,D,O四点,∠OAB=120°,OB=4,则点D的坐标是_____.10、如图,△ABC的顶点都在正方形网格的格点上,则tan∠A的值为__________.三、解答题(5小题,每小题10分,共计50分)1、计算:2sin60°+tan45°-cos30°tan60°2、先化简,再求代数式的值,其中.3、如图,在中,,,.点P从点出发,沿折线向终点C运动,点P在边、边上的运动速度分别为、.在点P的运动过程中,过点P作所在直线的垂线,交边或边于点Q,以为一边作矩形,且,与在的同侧.设点P的运动时间为t(秒),矩形与重叠部分的面积为.(1)求边的长.(2)当时,,当时,.(用含t的代数式表示)(3)当点M落在上时,求的值.(4)当矩形与重叠部分图形为四边形时,求S与的函数关系式.4、如图,已知反比例函数与一次函数相交于、两点,轴于点.若的面积为,且.(1)求出反比例函数与一次函数的解析式;(2)请直接写出点的坐标,并指出当在什么范围取值时,使5
立即下载