[2009][Nature][Haji.doc
上传人:sy****28 上传时间:2024-09-14 格式:DOC 页数:17 大小:68KB 金币:16 举报 版权申诉
预览加载中,请您耐心等待几秒...

[2009][Nature][Haji.doc

[2009][Nature][Haji.doc

预览

免费试读已结束,剩余 7 页请下载文档后查看

16 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

LETTERSDisordered,quasicrystallineandcrystallinephasesofdenselypackedtetrahedraAmirHaji-Akbari1*,MichaelEngel1*,AaronS.Keys1,XiaoyuZheng3,RolfeG.Petschek5,PeterPalffy-Muhoray4&SharonC.Glotzer1,2Allhard,convexshapesareconjecturedbyUlamtopackmoredenselythanspheres1,whichhaveamaximumpackingfractionofw5p/!182009|doi:10.1038/nature08641773MacmillanPublishersLimited.Allrightsreserved?2009Figure2ashowstheequationofstatew(P*)obtainedfromsimula-tionsofasmallsystemwith512tetrahedraandalargersystemwith4,096tetrahedra.Here,P*5Ps3/kBTisthereducedpressureandstheedgelengthofatetrahedron.Forthesmallsystem,theequilib-riumpackingfractionexhibitsanS-shapedtransitionatP*558andw50.47fromasimplefluidtoamorecomplexfluid,discussedbelow.Athigherpressurethesystemjams(SupplementaryFigs1and2)and,whencompressedtonearlyinfinitepressure,attainsamaximumpackingfractionofw50.7858.Thelargesystemunder-goesafirst-ordertransitiononcompressionofthefluidphaseandformsaquasicrystal.InFig.2b,weanalysethesystemforthepresenceoflocallydensemotifsintroducedinFig.1A.Weseethatthefractionoftetrahedrabelongingtoatleastonepentagonaldipyramidincreaseswellbeforejammingorcrystallization.Withincreasingpressure,interpenetratingpentagonaldipyramidsformicosahedraandfinallymergeintoapercolatingpentagonaldipyramidnetwork(Fig.2c,d)asthefractionoftetrahedrainpentagonaldipyramidsapproachesunity.Forthelargesystem,thefractionoftetrahedrainicosahedrasuddenlydropsatP*562,whencrystallizationoccurs.Comparisonwiththeglassshowsthatfarfewericosahedraremaininthequasicrystal.Figure2canddsuggestsapercolationtransi-tionofthepentagonaldipyramidnetworkinbothsystemsatP*p55862,beforebothjammingandcrystallization.Wedonotobservetetrahedraticliquidcrystalphases,whichhavebeensug-gestedbytheory24.Structuralchangesinthefluidarerevealedbytheunusualbeha-viourofitsradialdistributionfunctiong(r),asshowninFig.2e.Wefindthatthefirstpeaknear