强化训练重庆市实验中学数学九年级下册锐角三角函数专项练习试题(含答案及解析).docx
上传人:戊午****jj 上传时间:2024-09-12 格式:DOCX 页数:7 大小:286KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

强化训练重庆市实验中学数学九年级下册锐角三角函数专项练习试题(含答案及解析).docx

强化训练重庆市实验中学数学九年级下册锐角三角函数专项练习试题(含答案及解析).docx

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

重庆市实验中学数学九年级下册锐角三角函数专项练习考试时间:90分钟;命题人:校数学教研室考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、如图,有一个弓形的暗礁区,弓形所含的圆周角,船在航行时,为保证不进入暗礁区,则船到两个灯塔A,B的张角应满足的条件是()A.B.C.D.2、如图,等边三角形ABC和正方形ADEF都内接于⊙O,则AD:AB=()A.B.C.D.3、在中,∠C=90°,∠A、∠B、∠C的对边分别为、、,则下列式子一定成立的是()A.B.C.D.4、图①是第七届国际数学教育大会(ICME)会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图②所示的四边形.若,,则的值为()A.B.C.D.5、cos60°的值为()A.B.C.D.16、的值为()A.1B.2C.D.7、如图1所示,△DEF中,∠DEF=90°,∠D=30°,B是斜边DF上一动点,过B作AB⊥DF于B,交边DE(或边EF)于点A,设BD=x,△ABD的面积为y,图2是y与x之间函数的图象,则△ABD面积的最大值为()A.8B.16C.24D.488、小金将一块正方形纸板按图1方式裁剪,去掉4号小正方形,拼成图2所示的矩形,若已知AB=9,BC=16,则3号图形周长为()A.B.C.D.9、如图,在平面直角坐标系系中,直线与轴交于点,与轴交于点,与反比例函数在第一象限内的图象交于点,连接.若,,则的值是()A.B.C.D.10、如图,E是正方形ABCD边AB的中点,连接CE,过点B作BH⊥CE于F,交AC于G,交AD于H,下列说法:①;②点F是GB的中点;③;④S△AHG=S△ABC.其中正确的结论的序号是()A.①②③B.①③C.②④D.①③④第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题3分,共计30分)1、如图,矩形ABCD中,AB=4,AE=AD,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若F为CD中点,则BC的长为_____.2、如图,小明沿着坡度的坡面由到直行走了13米时,他上升的高度_______米.3、如图,大坝的横截面是一个梯形,坝顶宽,坝高,斜坡的坡度,斜坡的坡度,则坡底宽__________.4、如图,为半圆O的直径,C为半圆上的一点,,垂足为D,延长与半圆O交于点E.若,则图中阴影部分的面积为____________.5、如图,在Rt△ABC中,∠ACB=90°,D是斜边AB的中点,DE⊥AC,垂足为E,若DE=2,CD=,则sin∠DEB的值为___.6、如图,AB为半圆O的直径,点C为半圆上的一点,CD⊥AB于点D,若AB=10,CD=4,则sin∠BCD的值为____.7、计算的结果为______.8、比较大小:tan46°_____cos46°.9、已知正方形ABCD中,AB=2,⊙A是以A为圆心,1为半径的圆,若⊙A绕点B顺时针旋转,旋转角为α(0°<α<180°),则当旋转后的圆与正方形ABCD的边相切时,α=_____.10、在中,,,以BC为斜边作等腰,若,则BC边的长为______.三、解答题(5小题,每小题10分,共计50分)1、计算:.2、如图,在▱ABCD中,∠D=60°,对角线AC⊥BC,⊙O经过点A、点B,与AC交于点M,连接AO并延长与⊙O交于点F,与CB的延长线交于点E,AB=EB.(1)求证:EC是⊙O的切线;(2)若AD=2,求⊙O的半径.3、如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,以CD为直径的⊙O分别交AC,BC于点E,F两点,过点F作FG⊥AB于点G.(1)求证:FG是⊙O的切线;(2)若AC=3,CD=2.5,求FG的长.4、.5、如图,在△ABC中,∠B=30°,BC=40cm,过点A作AD⊥BC,垂足为D,∠ACD=75°.(1)求点C到AB的距离;(2)求线段AD的长度.
立即下载