如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
最新高一数学必修一详细教案(六篇)作为一位杰出的老师,编写教案是必不可少的,教案有助于顺利而有效地开展教学活动。大家想知道怎么样才能写一篇比较优质的教案吗?下面是小编带来的优秀教案范文,希望大家能够喜欢!高一数学必修一详细教案篇一②应用对数函数的性质可以解决:对数的大小比较,求复合函数的定义域、值域及单调性。③注重函数思想、等价转化、分类讨论等思想的渗透,提高解题能力。教学重点与难点:对数函数的性质的应用。⒈复习提问:对数函数的概念及性质。⒉开始正课1比较数的大小例1比较下列各组数的大小。⑴loga5.1,loga5.9(a>0,a≠1)⑵log0.50.6,logл0.5,lnл师:请同学们观察一下⑴中这两个对数有何特征?生:这两个对数底相等。师:那么对于两个底相等的对数如何比大小?生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。师:对,请叙述一下这道题的解题过程。生:对数函数的单调性取决于底的大小:当0调递减,所以loga5.1>loga5.9;当a>1时,函数y=logax单调递增,所以loga5.1板书:解:ⅰ)当0∵5.1loga5.9ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数,∵5.1<5.9∴loga5.1师:请同学们观察一下⑵中这三个对数有何特征?生:这三个对数底、真数都不相等。师:那么对于这三个对数如何比大小?生:找“中间量”,log0.50.6>0,lnл>0,logл0.51,log0.50.6<1,所以logл0.5板书:略。师:比较对数值的大小常用方法:①构造对数函数,直接利用对数函数的单调性比大小,②借用“中间量”间接比大小,③利用对数函数图象的位置关系来比大小。2函数的定义域,值域及单调性。高一数学必修一详细教案篇二三角函数的周期性一、学习目标与自我评估1掌握利用单位圆的几何方法作函数的图象2结合的图象及函数周期性的定义了解三角函数的周期性,及最小正周期3会用代数方法求等函数的周期4理解周期性的几何意义二、学习重点与难点“周期函数的概念”,周期的求解。三、学法指导1、是周期函数是指对定义域中所有都有,即应是恒等式。2、周期函数一定会有周期,但不一定存在最小正周期。四、学习活动与意义建构五、重点与难点探究例1、若钟摆的高度与时间之间的函数关系如图所示(1)求该函数的周期;(2)求时钟摆的高度。例2、求下列函数的周期。(1)(2)总结:(1)函数(其中均为常数,且的周期t=。(2)函数(其中均为常数,且的周期t=。例3、求证:的周期为。例4、(1)分析和函数的图象,分析其周期性。(2)求证:的周期为(其中均为常数,且总结:函数(其中均为常数,且的周期t=。例5、(1)求的周期。(2)已知满足,求证:是周期函数课后思考:能否利用单位圆作函数的图象。六、作业:七、自主体验与运用1、函数的周期为()a、b、c、d、2、函数的最小正周期是()a、b、c、d、3、函数的最小正周期是()a、b、c、d、4、函数的周期是()a、b、c、d、5、设是定义域为r,最小正周期为的函数,若,则的值等于()a、1b、c、0d、6、函数的最小正周期是,则7、已知函数的最小正周期不大于2,则正整数的最小值是8、求函数的最小正周期为t,且,则正整数的值是9、已知函数是周期为6的奇函数,且则10、若函数,则11、用周期的定义分析的周期。12、已知函数,如果使的周期在内,求正整数的值13、一机械振动中,某质子离开平衡位置的位移与时间之间的函数关系如图所示:(1)求该函数的周期;(2)求时,该质点离开平衡位置的位移。14、已知是定义在r上的函数,且对任意有成立,(1)证明:是周期函数;(2)若求的值。高一数学必修一详细教案篇三1、理解集合的概念和性质。2、了解元素与集合的表示方法。3、熟记有关数集。4、培养学生认识事物的能力。集合概念、性质集合概念的理解1、定义:集合:一般地,某些指定的对象集在一起就成为一个集合(集)。元素:集合中每个对象叫做这个集合的元素。由此上述例中集合的元素是什么?例(1)的元素为1、3、5、7,例(2)的元素为到两定点距离等于两定点间距离的点,例(3)的元素为满足不等式3x—2>x+3的实数x,例(4)的元素为所有直角三角形,例(5)为高一·六班全体男同学。一般用大括号表示集合,{?}如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}。则上几例可表示为??为方便,常用大写的拉丁字母表示集合:a={我校的篮球队员},b={1,2,3,4,5}(1)确定性;(2)互异性;(3)无序性。3、元素与集合的关系:隶属关系元素与集合的关系有“属于∈”及“不属于?(?也可表示为)两种。如a={2,4,8,16},则4∈a,8∈a