图像检索中相关反馈的半监督主动学习研究的中期报告.docx
上传人:快乐****蜜蜂 上传时间:2024-09-13 格式:DOCX 页数:5 大小:12KB 金币:5 举报 版权申诉
预览加载中,请您耐心等待几秒...

图像检索中相关反馈的半监督主动学习研究的中期报告.docx

图像检索中相关反馈的半监督主动学习研究的中期报告.docx

预览

在线预览结束,喜欢就下载吧,查找使用更方便

5 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

图像检索中相关反馈的半监督主动学习研究的中期报告AbstractThisreportpresentstheprogressofourresearchonsemi-supervisedactivelearningwithrelevantfeedbackforimageretrieval.Imageretrievalhasbecomeoneofthemostimportantapplicationsinthefieldofcomputervisionduetotheincreasingnumberofimagesavailableinvariousdomains.However,theperformanceofimageretrievalalgorithmsheavilyreliesonthequalityoftheannotatedtrainingdatasincemanualannotationisatime-consumingandlabor-intensivetask.Toaddressthisissue,activelearninghasbeenproposedtoautomaticallyselectthemostinformativesamplesforannotation.Meanwhile,relevantfeedbackfromuserscanbeincorporatedintoactivelearningtofurtherenhancetheperformanceofimageretrievalsystems.Inthisreport,wereviewrelatedworkonsemi-supervisedactivelearningandrelevantfeedback,anddiscussourproposedmethodsandpreliminaryexperimentalresults.IntroductionImageretrievalhasbeenwidelyusedinmanyfields,suchase-commerce,socialmedia,andvideosurveillance.However,thequalityofimageretrievalalgorithmsreliesheavilyontheavailabilityandqualityofannotatedtrainingdata.Manualannotationisatime-consumingandlabor-intensivetask,whichmakesitdifficulttoscaleuptolargedatasets.Inaddition,theannotationqualitymaybeinconsistentduetodifferentannotatorsorsubjectivecriteria.Toaddresstheseissues,activelearninghasbeenproposedtoautomaticallyselectthemostinformativesamplesforannotation.Activelearningisaniterativeprocessthatstartswithasmalllabeleddatasetandgraduallyexpandsittoreducetheannotationcostwhilemaintainingorevenimprovingtheperformanceofthemodel.Thekeyideaistoselectthesamplesthataremostinformativeforthemodel'straining,i.e.,thesamplesthatthemodelismostuncertainorconfidentbutwrongabout.Therearevariousselectioncriteriaforactivelearning,suchasuncertaintysampling,diversity,density,andrepresentativeness.However,activelearningonlyconsiderstheintrinsicpropertiesofthesamplesandignorestheadditionalinformationthatexternalsourcescouldprovide.Relevantfeedbackfromusers,suchasrelevancefeedback,preferencefeedback,orsimilarityfeedback,can