如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
复习计划复习计划时光在流逝,从不停歇,又迎来了一个全新的起点,是时候抽出时间写写计划了。你所接触过的计划都是什么样子的呢?以下是小编帮大家整理的复习计划10篇,希望对大家有所帮助。复习计划篇1考生应了解考研数学的命题原则、知道考题题型及试题难度近几年,教育部考试中心命题基本倾向是:根据学生的实际水平命题,特别是从20xx年开始,全国各个高校开始大规模扩招,学生的整体水平有所下降,所以试题的难度在这几年均有所降低,特别20xx年试题难度降到了历史的最低点。硕士研究生入学考试的数学试题以考察数学基本概念、基本方法和基本原理为主,并在这个基础上加强对考生的运算能力、抽象概括能力、逻辑思维能力、空间想象力和综合所学知识解决实际问题能力的考察。具体遵循下列四原则:1.科学性与公平性原则作为公共基础课,考研数学试题以基础性、生活类试题为主,尽量避免对于广大考生来说过于专业和抽象难懂的内容。2.覆盖全面的原则考研数学试题的内容要求涵盖所有考纲要求考核的内容,尤其涵盖数(一)、数(二)、数(三)、数(四)相区别之处。3.控制难易度的原则考研数学试题要求以中等偏上的题为主,考试及格率控制在30%-40%。4.控制题量的原则:考研数学试题的题量控制在20--23道之间(一般6道填空题,8道选择题,9道解答题),保证考生基本能答完试题并有时间检查。硕士研究生入学考试的数学试题从知识内容来说有覆盖面较大的特点,从题型与难度来说有以下特点:1.填空题(现在一份试卷中有6个填空题、共占24分)填空题实际上相当于一些简单的计算题,用于考察“三基”及数学性质,主要是为扩大试卷的覆盖面而设计的,一般以中等偏下难度的试题为主。2.选择题(现在一份试卷中有8个选择题、共占32分)选择题大致可分为三类:计算性的,概念性的与推理性的。主要是考查考生对数学概念、数学性质的理解,并能进行简单的推理、判定和比较。3.题以数学一为例,整张试卷中,一般有两道证明题:高等数学与线性代数各一题。高等数学证明题的范围大致有:极限存在性、不等式,零点的存在性、定积分的不等式、级数敛、散性的论证。线性代数有矩阵可逆与否的讨论、向量组线性无关与相关的论证、线性方程组无解、唯一解、无穷多解的论证,矩阵可否对角化的论证,矩阵正定的论证,关于秩的大小并用它来论证有关问题等等,可以说线代的证明题的范围比较广。至于概率统计证明题通常集中于随机变量的`不相关和独立性,估计的无偏性等。此类题难度一般中等偏上,无过难的题。4.计算与综合题一份试卷中,包括填空题在内计算题或计算性质的题占80%以上。计算题中有一部分是综合题。综合题考查的是知识之间的有机结合,此类题难度一般为中等难度。5.应用题每一试卷中都有一道应用题,主要考查学生的建模能力,而不是考查专业知识面(如微分方程部分不会考到涉及流体力学、电力学知识的应用题)。不会出现对某一群体明显有利或明显不利背景的题。应用题大致有几何、物理(一般限于力学和运动学)、变化率,等方面的问题,数三、数四应用题常涉及经济方面。复习计划篇2一.背景分析近年来的高考数学试题逐步做到科学化、规范化,坚持了稳中求改、稳中创新的原则。考试题不但坚持了考查全面,比例适当,布局合理的特点,也突出体现了变知识立意为能力立意这一举措。更加注重考查考生进入高校学习所需的基本素养,这些问题应引起我们在教学中的关注和重视。20xx年是湖南省新课标命题的第二年,数学试卷充分发挥数学作为基础学科的作用,既重视考查中学数学基础知识的掌握程度,又注意考查进入高校继续学习的潜能。在前二年命题工作的基础上做到了总体保持稳定,深化能力立意,积极改革创新,兼顾了数学基础、思想方法、思维、应用和潜能等多方面的考查,融入课程改革的理念,拓宽题材,选材多样化,宽角度、多视点地考查数学素养,多层次地考查思想能力,充分体现出湖南卷的特色:1试题题型平稳突出对主干知识的考查重视对新增内容的考查2充分考虑文、理科考生的思维水平与不同的学习要求,体现出良好的层次性3重视对数学思想方法的考查4深化能力立意,考查考生的学习潜能5重视基础,以教材为本6重视应用题设计,考查考生数学应用意识二、教学计划与要求新课已授完,高三将进入全面复习阶段,全年复习分两轮进行。第一轮为系统复习(第一学期),此轮要求突出知识结构,扎实打好基础知识,全面落实考点,要做到每个知识点,方法点,能力点无一遗漏。在此基础上,注意各部分知识点在各自发展过程中的纵向联系,以及各个部分之间的横向联系,理清脉络,抓住知识主干,构建知识网络。在教学中重点抓好各中通性、通法以及常规方法的复习,是学生形成一些最基本的数学意识,掌握一些最基本的数学方法。同时有意识进行一定的综合训练,先小综合再大综合,逐步提高学生解题能力。三、具体方法措施1.认真学习《考试说明》,研究高