如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
中考数学的复习方法新版多篇[摘要]中考数学的复习方法新版多篇为的会员投稿推荐,但愿对你的学习工作带来帮助。初中数学中考复习备考方案篇一一、指导思想数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生。所以数学复习要面向全体学生,要使各层次的学生对初中数学基础知识、基本技能和基本方法的掌握程度均有所提高,还要使尽可能多的学生形成良好的思维能力、较强的综合能力、创新意识和实践能力。二、认真学习课标和考试说明认真学习课标和中考考试说明,梳理清楚知识点,把握准应知应会。哪些要让学生理解掌握,哪些要让学生灵活运用,教师对要复习的内容和要求做到心中有数,了然于心,这样就能驾驭复习的全过程,全面提高复习的质量。三、复习思路知识梳理形成知识网络(3月30日-5月15日完成)近几年的中考题安排了较大比例的试题来考查双基。全卷的基础知识的覆盖面较广,起点低,许多试题源于课本,在课本中能找到原型,有的是对课本原型进行加工、组合、延伸和拓展。复习中要紧扣教材,夯实基础,同时关注新教材中的新知识,对课本知识进行系统梳理,形成知识网络,同时对典型问题进行变式训练,做到以不变应万变,提高应变能力。具体做法是:师生每人全套初中数学教材经常带在身边备用,对各章节按《数与式》、《方程与不等式》、《函数及其应用》、《图形与几何初步》、《图形与变换》、《图形与证明》、《概率及统计初步》这七个单元进行系统复习,资料的选取以《中考密码》为主。在每一个单元复习中,为了有效地使学生弄清知识的结构,先用一定的时间让学生按照自己的实际有目的地自由复习。要求学生在复习中重点放在理解概念、弄清定义、掌握基本方法上。教师引导学生对本单元知识进行系统归类,弄清内部结构,然后让学生通过恰当的训练,加深对概念的理解、结论的掌握、方法的运用和能力的提高。每复习一个单元,要进行单元过关测试,及时总结得与失,可使学生对知识的学习深入一步。复习应该注意:(1)首先,必须人人过记忆关。必须做到记牢记准所有的定义、法则、公式、定理等,没有准确无误的记忆,就不可能有好的结果。(2)要充分发挥学生的主体作用,给学生尽可能多的动手、动脑、讨论的时间,让他们去说、去做,暴露他们的思维过程,激发学生的思维潜能。(3)精讲精练,举一反三、触类旁通。大练习量是相对而言的,它不是盲目的大,也不是盲目的练。而是有针对性、典型性、层次性、切中要害的强化练习。中考数学的复习方法篇二7、特殊值的形式①当x=1时y=a+b+c②当x=-1时y=a-b+c③当x=2时y=4a+2b+c④当x=-2时y=4a-2b+c二次函数的性质8、定义域:R值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)奇偶性:当b=0时为偶函数,当b≠0时为非奇非偶函数。周期性:无解析式:①y=ax^2+bx+c[一般式]⑴a≠0⑵a>0,则抛物线开口朝上;a⑶极值点:(-b/2a,(4ac-b^2)/4a);⑷Δ=b^2-4ac,Δ>0,图象与x轴交于两点:([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0);Δ=0,图象与x轴交于一点:(-b/2a,0);Δ②y=a(x-h)^2+k[顶点式]此时,对应极值点为(h,k),其中h=-b/2a,k=(4ac-b^2)/4a;③y=a(x-x1)(x-x2)[交点式(双根式)](a≠0)对称轴X=(X1+X2)/2当a>0且X≧(X1+X2)/2时,Y随X的增大而增大,当a>0且X≦(X1+X2)/2时Y随X的增大而减小此时,x1、x2即为函数与X轴的两个交点,将X、Y代入即可求出解析式(一般与一元二次方程连用)。交点式是Y=A(X-X1)(X-X2)知道两个x轴交点和另一个点坐标设交点式。两交点X值就是相应X1X2值。26.2用函数观点看一元二次方程0的一个根。?c?bx?x0就是方程ax2?x0时,函数的值是0,因此x?c与x轴有公共点,公共点的横坐标是x0,那么当x?bx?ax2?1.如果抛物线y2、二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。26.3实际问题与二次函数在日常生活、生产和科研中,求使材料最省、时间最少、效率等问题,有些可归结为求二次函数的值或最小值。第二十七章相似27.1图形的相似概述如果两个图形形状相同,但大小不一定相等,那么这两个图形相似。(相似的符号:∽)判定如果两个多边形满足对应角相等,对应边的比相等,那么这两个多边形相似。相似比相似多边形的对应边的比叫相似比。相似比为1时,相似的两个图形全等。性质相似多边形的对应角相等,对应边的比相等。相似多边形的周长比等