(完整word版)北师版九年级下册第三章圆知识点及习题-推荐文档.doc
上传人:映雁****魔王 上传时间:2024-09-11 格式:DOC 页数:33 大小:2.2MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

(完整word版)北师版九年级下册第三章圆知识点及习题-推荐文档.doc

(完整word版)北师版九年级下册第三章圆知识点及习题-推荐文档.doc

预览

免费试读已结束,剩余 23 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

九年级下册第三章圆【知识梳理】一、圆的认识1.圆的定义:描述性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的圆形叫做圆;固定的端点O叫做圆心;线段OA叫做半径;以点O为圆心的圆,记作⊙O,读作“圆O”集合性定义:圆是平面内到定点距离等于定长的点的集合。其中定点叫做圆心,定长叫做圆的半径,圆心定圆的位置,半径定圆的大小,圆心和半径确定的圆叫做定圆。对圆的定义的理解:①圆是一条封闭曲线,不是圆面;②圆由两个条件唯一确定:一是圆心(即定点),二是半径(即定长)。与圆相关的概念①弦和直径:弦:连接圆上任意两点的线段叫做弦。直径:经过圆心的弦叫做直径。②弧、半圆、优弧、劣弧:弧:圆上任意两点间的部分叫做圆弧,简称弧,用符号“⌒”表示,以CD为端点的弧记为“”,读作“圆弧CD”或“弧CD”。半圆:直径的两个端点分圆成两条弧,每一条弧叫做半圆。优弧:大于半圆的弧叫做优弧。劣弧:小于半圆的弧叫做劣弧。(为了区别优弧和劣弧,优弧用三个字母表示。)③弓形:弦及所对的弧组成的图形叫做弓形。④同心圆:圆心相同,半径不等的两个圆叫做同心圆。⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。⑦圆心角:顶点在圆心的角叫做圆心角.⑧弦心距:从圆心到弦的距离叫做弦心距.3、点与圆的位置关系及其数量特征:如果圆的半径为r,点到圆心的距离为d,则①点在圆上<===>d=r;②点在圆内<===>d<r;③点在圆外<===>d>r.其中点在圆上的数量特征是重点,它可用来证明若干个点共圆,方法就是证明这几个点与一个定点、的距离相等。二.圆的对称性:1、圆是轴对称图形,直径所在的直线是它的对称轴,圆有无数条对称轴。2、圆是中心对称图形,对称中心为圆心3、定理:在同圆或等圆中,相等的圆心角所对的弧相等、所对的弦相等、所对的弦心距相等。推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.2.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。上述五个条件中的任何两个条件都可推出其他三个结论。三.圆周角和圆心角的关系:1.1°的弧的概念:把顶点在圆心的周角等分成360份时,每一份的角都是1°的圆心角,相应的整个圆也被等分成360份,每一份同样的弧叫1°弧.2.圆心角的度数和它所对的弧的度数相等.这里指的是角度数与弧的度数相等,而不是角与弧相等.即不能写成∠AOB=,这是错误的.3.圆周角的定义:顶点在圆上,并且两边都与圆相交的角,叫做圆周角.4.圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对的圆周角相等;反之,在同圆或等圆中,相等圆周角所对的弧也相等;推论2:半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径;推论3:圆内接四边形的对角互补。圆周角的三种情况:BACOOABCBAC\CO四.确定圆的条件:1.理解确定一个圆必须的具备两个条件:圆心和半径,圆心决定圆的位置,半径决定圆的大小.经过一点可以作无数个圆,经过两点也可以作无数个圆,其圆心在这个两点线段的垂直平分线上.2.经过三点作圆要分两种情况:(1)经过同一直线上的三点不能作圆.(2)经过不在同一直线上的三点,能且仅能作一个圆.定理:不在同一直线上的三个点确定一个圆.3.三角形的外接圆、三角形的外心、圆的内接三角形的概念:(1)三角形的外接圆和圆的内接三角形:经过一个三角形三个顶点的圆叫做这个三角形的外接圆,这个三角形叫做圆的内接三角形.(2)三角形的外心:三角形外接圆的圆心叫做这个三角形的外心.(3)三角形的外心的性质:三角形外心到三顶点的距离相等.外接圆五.直线与圆的位置关系1.直线和圆相交、相切相离设⊙O的半径为r,圆心O到直线的距离为d;①d<r<===>直线L和⊙O相交.——两个公共点②d=r<===>直线L和⊙O相切.——惟一公共点,惟一的公共点做切点.③d>r<===>直线L和⊙O相离.——没有公共点相离相切相交2.切线的总判定定理:经过半径的外端并且垂直于这个条半径的直线是圆的切线.3.切线的性质定理:圆的切线垂直于过切点的半径.※推论1经过圆心且垂直于切线的直线必经过切点.※推