660MW超临界火力发电热力系统分析.pdf
上传人:文库****品店 上传时间:2024-09-11 格式:PDF 页数:81 大小:7.3MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

660MW超临界火力发电热力系统分析.pdf

660MW超临界火力发电热力系统分析.pdf

预览

免费试读已结束,剩余 71 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

1绪论1.1课题研究背景及意义我国的煤炭消耗量在世界上名列前茅,并且我们知道一次能源的主要消耗就是煤炭的消耗,而在电力行业中煤炭又作为主要的消耗品。根据统计,在2010年的时候,全国的煤炭在一次能源消费和生产的结构中,占有率达到了71.0%和75.9%,从全球范围来看,煤炭在一次能源的消费和生产结构中达到了48.5%和47.9%。根据权威机构的预测,到了2020年,我国一次能源的消费结构中,煤炭占有率约为55%,煤炭的消费量将达到38亿吨以上;到了2050年,煤炭在一次能源消费的结构中占有率仍有50%左右。由此看来,煤炭消耗量还是最主要的能源消耗[1]。电力生产这块来看,在2011年,我国整体的用电量达到46819亿千瓦时,比2010年增长了11.79%.在这中间,火力发电的发电量达到了38900亿千瓦时,比2010年增长了14.10%,整个火力发电量占据全国发电量的82.45%,对比2010年增长了1.73个百分点,这说明电力行业的主要生产来自于火力发电,是电力生产的主要提供[2]。自改革开放以来,国家大力发展电力工业中的火力发电,每年的装机发电量以每年8各百分点飞速增长[3]。飞速发展的中国经济使得电力需求急剧上升,这也带来相应的高能耗,据统计,全国2002年到2009年的火力发电装机容量从2.648×108ᵅᵄ几乎翻2.5倍的增长为到了6.52×108ᵅᵄ,煤耗的消耗量增加了13亿吨。预计到2020年,火电装机的容量还会增长到11.32×108ᵅᵄ,需要的煤耗量预计为38亿吨多,估计占有量会达到届时总煤碳量的55%[4],[5]。随着发展的需要,大功率和高参数的机组对能耗的能量使用率会大大提升,这样对于提高火力发电燃煤机组的效率有着很重要的发展方向。2011年,全国600兆瓦级别以上的火力发电厂消耗的标准煤是329克/千瓦时,比2010年降低了约有4克/千瓦时,在2012年时,消耗的标准煤降低了3克/千瓦时达到了326克/千瓦时,但是在发达国家,美、日等技术成熟国家的600兆瓦级别以上的火力发电厂消耗的标准煤仅仅约为每千瓦时300克上下,可以从中看出和我国的差距还是很大的。这表明,全国600兆瓦及其以上级别的超临界火电机组在设计水平、实际运行等方面与国外成熟的火电技术是有着较大的差距。这样看来,对于600兆瓦及其以上级别的超临界火电机组的热力系统优化,探求其节能的潜力有着很重要的意义[6]。节能是我国很多年来一直遵循的重要方针和贯彻可持续发展的重要战略,从2016年开始,我国进入十三五规划的重要时期,在这一时期,我国全面建成小康社会的最为重要的时期。预计世界经济会进入后危机时期,全国经济建设和工业发展将进入新的平1稳上升期[7]-[9]。工业发展进入更为绿色的新阶段,新能源带来的冲击会给传统工业带来更大的危机。这对于传统工业来是机遇和挑战,对于火力发电来说,能耗的高消耗是绿色发展的重要方向[10]。火电厂标准煤耗的降低会节省大量的消耗煤炭,节能指标也会得以体现,例如秦岭发电厂中主要参数对煤耗的影响中,锅炉效率煤增加1%,标准煤耗率就会降低3.2克/千瓦时,年标准煤耗量就会减少23360吨,年生产成本就会节省1188.79万元[11]。因此可以看出其节能影响之大,将热力系统作为对象定量计算和分析,对机组内部参数进行剖析。定量计算方法对考核火力发电机组的热经济性有着非常实际的指导意义和现实价值,作为火电厂系统的初始设计方法和技术改造基础在热力系统分析方法中有着重要的地位[12]。本文将采用定流量计算分析火电厂热力系统的热力单元之间存在的能量关系,探讨可优化的点,为节能寻找优化信息。我们可以依靠系统增加的有序性和减少的不确定性用以将能源的利用率进行提高。1.2国内外发展现状热力系统的分析方法是为了更加准确的和真实的展示热力系统内部的真实情况和反映出热力单元之间存在的关系。经过诸多的科研工作者和前人科学家的努力研究和实际应用尝试,现今,针对各个热力参数的研究出现了多种研究方法,这些研究方法根据其基础原理,有基于热力学第一定律的,其中有代数运算方法、矩阵法和偏微分理论方法;基于热力学第二定律并结合第一热力学定律的主要是㶲分析方法。1.2.1代数运算法的研究进展代数运算法本质上是根据实际运行情况联立每个热力单元,热力子系统的质量与能量的平衡方程,计算精确度比较高的分析方法。主要是基于热力学第一定律的大框架下,对抽汽回热系统的各级抽汽之间的关系量化,数据化计算分析[13],[14]。代数运算法在热力分析中存在多种方式,都是基于热力学第一定律的大框架下。主要是对抽汽回热系统的