(完整word版)北师大版八年级数学上册第二章实数知识点及习题(良心出品必属精品).doc
上传人:是笛****加盟 上传时间:2024-09-11 格式:DOC 页数:30 大小:1.6MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

(完整word版)北师大版八年级数学上册第二章实数知识点及习题(良心出品必属精品).doc

(完整word版)北师大版八年级数学上册第二章实数知识点及习题(良心出品必属精品).doc

预览

免费试读已结束,剩余 20 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

八下·实数实数知识点一、【平方根】如果一个数x的平方等于a,那么,这个数x就叫做a的平方根;也即,当时,我们称x是a的平方根,记做:。因此:1、当a=0时,它的平方根只有一个,也就是0本身;2、当a>0时,也就是a为正数时,它有两个平方根,且它们是互为相反数,通常记做:。3、当a<0时,也即a为负数时,它不存在平方根。例1.(1)的平方是64,所以64的平方根是;(2)的平方根是它本身。(3)若的平方根是±2,则x=;的平方根是(4)当x时,有意义。(5)一个正数的平方根分别是m和m-4,则m的值是多少?这个正数是多少?知识点二、【算术平方根】:1、如果一个正数x的平方等于a,即,那么,这个正数x就叫做a的算术平方根,记为:“”,读作,“根号a”,其中,a称为被开方数。特别规定:0的算术平方根仍然为0。2、算术平方根的性质:具有双重非负性,即:。3、算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。因此,算术平方根只有一个值,并且是非负数,它只表示为:;而平方根具有两个互为相反数的值,表示为:。例2.(1)下列说法正确的是()A.1的立方根是;B.;(C)、的平方根是;(D)、0没有平方根;(2)下列各式正确的是()A、B、C、D、(3)的算术平方根是。(4)若有意义,则___________。(5)已知△ABC的三边分别是且满足,求c的取值范围。(7)如果x、y分别是4-EQ\R(,3)的整数部分和小数部分。求x-y的值.(8)求下列各数的平方根和算术平方根.64;;0.0004;(-25)2;11.0,8,,441,196,10-4(9)()2等于多少?()2等于多少?(10)()2等于多少?(11)对于正数a,()2等于多少?我们共学了加、减、乘、除、乘方、开方六种运算.加与减互为逆运算,乘与除互为逆运算,乘方与开方互为逆运算.知识点三、【开平方性质】=_________,=_________;(2)=_________,=_________;=_________,=_________;(4)_________,=_________.知识点四、【立方根】:1、如果x的立方等于a,那么,就称x是a的立方根,或者三次方根。记做:,读作,3次根号a。注意:这里的3表示的是根指数。一般的,平方根可以省写根指数,但是,当根指数在两次以上的时候,则不能省略。2、平方根与立方根:每个数都有立方根,并且一个数只有一个立方根;但是,并不是每个数都有平方根,只有非负数才能有平方根。例3.(1)64的立方根是(2)若,则b等于()A.1000000B.1000C.10D.10000(3)下列说法中:①都是27的立方根,②,③的立方根是2,④。其中正确的有()A、1个B、2个C、3个D、4个知识点五、【无理数】:1、无限不循环小数叫做无理数;它必须满足“无限”以及“不循环”这两个条件。在初中阶段,无理数的表现形式主要包含下列几种:(1)特殊意义的数,如:圆周率以及含有的一些数,如:2-,3等;(2)开方开不尽的数,如:等;(3)特殊结构的数:如:2.01001000100001…(两个1之间依次多1个0)等。应当要注意的是:带根号的数不一定是无理数,如:等;无理数也不一定带根号,如:2、有理数与无理数的区别:(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。例4.(1)下列各数:①3.141、②0.33333……、③、④π、⑤、⑥、⑦0.3030003000003……(相邻两个3之间0的个数逐次增加2)、其中是有理数的有_______;是无理数的有_______。(填序号)(2)有五个数:0.125125…,0.1010010001…,-,,其中无理数有()个A2B3C4D5知识点六、【实数】:1、有理数与无理数统称为实数。在实数中,没有最大的实数,也没有最小的实数;绝对值最小的实数是0,最大的负整数是-1,最小的正整数是1.2、实数的性质:实数a的相反数是-a;实数a的倒数是(a≠0);实数a的绝对值|a|=,它的几何意义是:在数轴上的点到原点的距离。3、实数的大小比较法则:实数的大小比较的法则跟有理数的大小比较法则相同:即正数大于0,0大于负数;正数大于负数;两个正数,绝对值大的就大,两个负数,绝对值大的反而小。(在数轴上,右边的数总是大于左边的数)。对于一些带根号的无理数,我们可以通过比较它们的平方或者立方的大小。4、实数的运算:在实数范围内
立即下载