小波域的数字调制信号识别及码速率估计的中期报告.docx
上传人:快乐****蜜蜂 上传时间:2024-09-14 格式:DOCX 页数:3 大小:11KB 金币:5 举报 版权申诉
预览加载中,请您耐心等待几秒...

小波域的数字调制信号识别及码速率估计的中期报告.docx

小波域的数字调制信号识别及码速率估计的中期报告.docx

预览

在线预览结束,喜欢就下载吧,查找使用更方便

5 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

小波域的数字调制信号识别及码速率估计的中期报告LITERATUREREVIEWInrecentyears,theuseofwavelettransformfordigitalsignalprocessinghasbecomeincreasinglypopularduetoitsabilitytoanalyzesignalsinbothtimeandfrequencydomainsimultaneouslyanditsabilitytocapturebothshort-termandlong-termbehaviorofsignals.Inparticular,wavelettransformhasbeenusedformodulationrecognitionandsignalclassificationinvariouscommunicationsystems.Modulationrecognitionisanimportanttaskinmanysignalprocessingapplications,includingradar,wirelesscommunication,andsatellitecommunication.Itinvolvesidentifyingthemodulationparametersofareceivedsignal,suchasmodulationscheme,carrierfrequency,andsymbolrate.Therearevariousmethodsformodulationrecognition,suchasstatisticalclassifiers,artificialneuralnetworks,andsupportvectormachines.However,thesemethodsrequireconsiderablecomputationalresourcesandmaysufferfromoverfittingandlimitedaccuracy.Recently,wavelettransformhasbeenusedformodulationrecognitionduetoitsabilitytocapturethefrequencyandtime-varyingnatureofsignals.Inparticular,waveletpackettransform(WPT)hasbeenusedtoextractrelevantfeaturesfromthesignalformodulationrecognition.Theextractedfeaturesarethenusedasinputstomachinelearningalgorithmsforclassification.Anotherimportanttaskindigitalsignalprocessingistheestimationofthesymbolrateofareceivedsignal.Symbolrateestimationiscriticalinvariouscommunicationsystems,asitenablessynchronizationbetweenthetransmitterandreceiver.Therearevarioustechniquesforsymbolrateestimation,includingautocorrelationandmaximumlikelihoodestimators.However,thesetechniquesmaysufferfrompoorperformanceinnoisyandmultipathchannels.Wavelettransformhasbeenusedforsymbolrateestimationduetoitsabilitytocapturethetime-varyingnatureofsignals.Inparticular,continuouswavelettransform(CWT)andWPThavebeenusedforsymbolrateestimationinvariouscommunicationsystems.Theextractedfeaturesfromthewavelettransformareusedtoestimatethesymbolrateusingmaximumlikelihoodorautocorrelation-basedtechniques.PROBLEMSTATEMENTInthisproject,weaimtodevelopasystem