《化工原理II》填空试题.pdf
上传人:文库****品店 上传时间:2024-09-11 格式:PDF 页数:18 大小:1.8MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

《化工原理II》填空试题.pdf

《化工原理II》填空试题.pdf

预览

免费试读已结束,剩余 8 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

《化工原理II》填空试题化工原理(下册)题库填空题:在描述传质的费克定律中,扩散通量J与浓度梯度或压力梯度成正比,其比例系数称为扩散系数,表示传质阻力的倒数。分子扩散是凭借流体分子热运动来传递物质的,而涡流扩散是凭借流体质点的湍动和漩涡来传递物质的。单向扩散速率与等分子反向扩散速率相比多了一个漂流因子,在低浓度气体中该因数B,在高浓度气体中该因数A(A:大于1.0B:约等于1.0C:小于1.0D:约等于0.0),讲明总体流淌对传质速率的阻碍较大。当流体呈湍流流淌时,物质的传递是分子扩散和涡流扩散共同作用的结果,这时的物质传递过程称为对流传质过程。分子扩散中主体流淌产生的缘故是组分A能够通过相界面,组分B为停滞组分,组分A单向扩散通过相界面后,在界面邻近显现空位,使得界面压力低于主体压力,其他分子前来补充,造成主体向界面的流淌,在主体流淌的存在下,扩散速率会发生什么变化增大(增大、减小、不变),在什么情形下可不考虑主体流淌的阻碍溶质A浓度较低。某逆流吸取塔,用纯溶剂吸取混合气中的易溶组分,入塔混合气浓度为0.04,出塔混合气浓度为0.02,操作液气比L/V=2(L/V)min,气液相平稳关系为ye=2x,该吸取塔完成分离任务所需的理论板数N为1。解:L/V=2(L/V)min,(L/V)min=(yb-ya)/(xbe-xa)=(yb-ya)/(yb/m)=(0.04-0.02)/(0.04/0.02)=1,L/V=2=m操作线与相平稳线平行,S=1,xa=0,Δym=ya=0.02,N=NOG=(yb-ya)/Δym=(0.04-0.02)/0.02=1某逆流解吸塔,若气液入口组成及温度、压力均不变,而气量与液量同比例减少,对液膜操纵系统,气体出口组成Ya将增大,液体出口组成xb将减小,溶质解吸率将增大。解:已知yb、xa、L/V、h不变,HOG减小,NOG上升,故ya上升,xb下降,η=(xa-xb)/xa增大。也可图解,V减小,传质推动力减小,操作线上移。气相中物质的扩散系数随温度的升高而增大,随压力的升高而减小;液相中物质的扩散系数随粘度的增加而减小。(增大、减小、不变)8.常压25℃下,气相溶质A的分压为0.054atm的混合汽体与溶质A浓度为0.0018mol/l的水溶液接触,如果在该工作条件下,体系符合亨利定律,亨利系数E=0.15×104atm,ρH2O≈1000kg/m3,咨询溶质A的传质方向是(16)。A:吸取B:平稳C:解吸D:无法判定某气体吸取过程,符合亨利定律,相平稳常数m=1,气膜吸取系数kY=1×10-4kmol/(m2s),液膜吸取系数kX的值为kY值的100倍,试判定这一吸取过程为(16)(气膜、液膜、双膜)操纵过程,该气体为(17)(易溶气体、难溶气体),气相总传质系数为(18)。双组分混合物中,组分A的扩散系数除了与系统的物质属性有关外,还随温度、压力及混合物中组分A的浓度的不同而变化,关于气体中的扩散,浓度的阻碍能够忽略。当系统总浓度增加时,扩散系数将减少,当系统中组分B的分子量增加时,扩散系数将减少(增加、减少、不变、不定)。双组分理想气体进行单向扩散,如坚持气相各部分PA不变,则在下述情形下,气相中的传质通量NA将如何变化,A:总压增加,NA减少(增加、减少、不变),B:温度增加,NA增加(增加、减少、不变),C:气相中惰性组分的摩尔分率减少,则NA增加(增加、减少、不变)。扩散通量式JA=-D(dCA/dz)=-JBAF(A:能够用于多组分系统、B:只能用于双组分系统、C:只能用于稀溶液、D:只能用于理想气体、E:只能用于液相、F:能够同时用于液相或气相系统)(多选)所示为同一温度下A、B、C三种气体在水中的溶解度曲线。由图可知,它们的溶解度次序为C>B>A(由大到小),在吸取过程中,温度及汽液流量不变,压力增大,可使相平稳常数减小,传质推动力增大(增大、减小、不变)。三传类比是指动量传递、热量传递、和质量传递之间的类比。吸取操作中对吸取剂要紧要求包括:选择性好、溶解度高、可循环使用、挥发性小。(至少写出四种)在一个逆流操作的吸取塔中,某截面上的气相浓度为y(摩尔分率,下同),液相浓度为x,在一定温度下,气液相平稳关系为ye=mx,气相传质系数为ky,液相传质系数为kx,则该截面上的气相传质总推动力可表示为y-mx,气相传质总阻力可表示为1/Ky=1/ky+m/kx;如果降低吸取剂的温度,使相平稳关系变为ye=m’x,假设该截面上的两相浓度及单相传质系数保持不变,则传质总推动力增大,传质总阻力中气相传质阻