如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
初一上册数学教学计划初一上册数学教学计划时间流逝得如此之快,前方等待着我们的是新的机遇和挑战,不妨坐下来好好写写计划吧。什么样的计划才是好的计划呢?以下是小编帮大家整理的初一上册数学教学计划,欢迎大家分享。初一上册数学教学计划1教学目标(1)会用公式法解一元二次方程;(2)经历求根公式的发现和探究过程,提高学生观察能力、分析能力以及逻辑思维能力;(3)渗透化归思想,领悟配方法,感受数学的内在美.教学重点知识层面:公式的推导和用公式法解一元二次方程;能力层面:以求根公式的发现和探究为载体,渗透化归的数学思想方法.教学难点:求根公式的推导.总体设计思路:以旧知识为起点,问题为主线,以教师指导下学生自主探究为基本方式,突出数学知识的内在联系与探究知识的方法,发展学生的理性思维.教学过程(一)以旧引新,提出问题解下列一元二次方程:(学生选两题做)(1)x2+4x+2=0;(2)3x2-6x+1=0;(3)4x2-16x+17=0;(4)3x2+4x+7=0.然后让学生仔细观察四题的解答过程,由此发现有什么相同之处,有什么不同之处?接着再改变上面每题的其中的一个系数,得到新的四个方程:(学生不做,思考其解题过程)(1)3x2+4x+2=0;(2)3x2-2x+1=0;(3)4x2-16x-3=0;(4)3x2+x+7=0.思考:新的四题与原题的解题过程会发生什么变化?设计意图:1.复习巩固旧知识,为本节课的学习扫除障碍;2.让学生充分感受到用配方法解题既存在着共性,也存在着不同的现象,由此激发学生的求知欲望.3、学生根据自己的情况选两题,这样做能保证运算的正确和继续学习数学的信心。(二)分析问题,探究本质由学生的观察讨论得到:用配方法解不同一元二次方程的过程中,相同之处是配方的过程----程序化的操作,不同之处是方程的根的'情况及其方程的根.进而提出下面的问题:既然过程是相同的,为什么会出现根的不同?方程的根与什么有关?有怎样的关系?如何进一步探究?让学生讨论得出:从一元二次方程的一般形式去探究根与系数的关系.ax2+bx+c=0(a≠0)注:根据学生学习程度的不同,可ax2+bx=-c以采用学生独立尝试配方,合x2+x=-作尝试配方或教师引导下进行x2+x+=-+配方等各种教学形式.(x+)2=然后再议开方过程(让学生结合前面四题方程来加以讨论),使学生充分认识到“b2-4ac”的重要性.当b2-4ac≥0时,(x+)2=注:这样变形可以避免对a正、负的讨论,x+=便于学生的理解.x=-即x=x1=,x2=当b2-4ac方程无实数根.设计意图:让学生通过经历知识形成的全过程,从而提高自身的观察能力、分析问题和解决问题的能力,发展了理性思维.(三)得出结论,解决问题由上面的探究过程可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c确定.当b2-4ac≥0时,x=;当b2-4ac这个式子对解题有什么帮助?通过讨论加深对式子的理解,同时让学生进一步感受到数学的简洁美、和谐美.进而阐述这个式子叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法.设计意图:理解是记忆的基础。只有理解了公式才能烂熟于心,才能在题目中熟练应用,不会因记不清公式造成运算的错误。运用公式法解一元二次方程.(前两道教师示范,后两道学生练习)(1)2x2-x-1=0;(2)4x2-3x+2=0;(3)x2+15x=-3x;(4)x2-x+=0.注:(教师在示范时多强调注意点、易错点,会减少学生做题的错误,让学生在做题中获得成功感。)设计意图:进一步阐述求根公式,归纳总结用公式法解一元二次方程的一般步骤,及时总结简化运算,节约时间又提高做题的准确性。用公式法解一元二次方程:(比一比,看谁做得又快又对)(1)x2+x-6=0;(2)x2-x-=0;(3)3x2-6x-2=0;(4)4x2-6x=0;设计意图:能够熟练运用公式法解一元二次方程,让每位学生都有所收获,通过大量练习,熟悉公式法的步骤,训练快速准确的计算能力。(四)拓展运用,升华提高[想一想]清清和楚楚刚学了用公式法解一元二次方程,看到一个关于x的一元二次方程x2+(2m-1)x+(m-1)=0,清清说:“此方程有两个不相等的实数根”,而楚楚反驳说:“不一定,根的情况跟m的值有关”.那你们认为呢?并说明理由.设计意图:基于学生基础较好,因此对求根公式作进一步深化,并综合运用了配方法,使不同层次的学生都有不同提高.比较配方法在不同题型中的用法,避免以后出现运算错误。归纳小结,结合上面想一想,让学生尝试对本节课的知识进行梳理,对方法进行提炼,从而使学生的知识和方法更具系统化和网络化,同时也是情感的升华过程.(五)布置作业㈠必做题㈡选做题:P46第12题。设计意图:结合学生的实际情况