基础强化湖南张家界市民族中学数学九年级下册锐角三角函数综合训练试卷(详解版).docx
上传人:一只****呀9 上传时间:2024-09-12 格式:DOCX 页数:8 大小:226KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

基础强化湖南张家界市民族中学数学九年级下册锐角三角函数综合训练试卷(详解版).docx

基础强化湖南张家界市民族中学数学九年级下册锐角三角函数综合训练试卷(详解版).docx

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

湖南张家界市民族中学数学九年级下册锐角三角函数综合训练考试时间:90分钟;命题人:校数学教研室考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、如图,∠ACB=60○,半径为1的⊙O切BC于点C,若将⊙O在直线CB上沿某一方向滚动,当滚动到⊙O与CA也相切时,圆心O移动的水平距离为()A.B.C.π或D.或2、如图,为测量一幢大楼的高度,在地面上与楼底点相距30米的点处,测得楼顶点的仰角,则这幢大楼的高度为()A.米B.米C.米D.米3、如图,△ABC中,AB=AC=2,∠B=30°,△ABC绕点A逆时针旋转α(0<α<120°)得到△AB'C',B'C'与BC、AC分别交于点D、点E,设CD+DE=x,△AEC'的面积为y,则y与x的函数图象大致为()A.B.C.D.4、如图,为测量小明家所住楼房的楼高,小明从楼底A出发先沿水平方向向左行走到达点C,再沿坡度的斜坡行走104米到达点D,在D处小明测得楼底点A处的俯角为,楼顶最高处B的仰角为,所在的直线垂直于地面,点A、B、C、D在同一平面内,则的高度约为()米.(参考数据:,,,,,)A.104B.106C.108D.1105、小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A.3.2米B.3.9米C.4.7米D.5.4米6、如图,若要测量小河两岸相对的两点A,B的距离,可以在小河边取AB的垂线BP上的一点C,测得BC=50米,∠ACB=46°,则小河宽AB为多少米()A.50sin46°B.50cos46°C.50tan46°D.50tan44°7、球沿坡角的斜坡向上滚动了5米,此时钢球距地面的高度是().A.米B.米C.米D.米8、下列叙述正确的有()①圆内接四边形对角相等;②圆的切线垂直于圆的半径;③正多边形中心角的度数等于这个正多边形一个外角的度数;④过圆外一点所画的圆的两条切线长相等;⑤边长为6的正三角形,其边心距为2.A.1个B.2个C.3个D.4个9、在Rt△ABC中,∠C=90°,AC=5,BC=3,则sinA的值是()A.B.C.D.10、在中,,则的值是()A.B.C.D.第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题3分,共计30分)1、如图,已知扇形OAB的半径为6,C是弧AB上的任一点(不与A,B重合),CM⊥OA,垂足为M,CN⊥OB,垂足为N,连接MN,若∠AOB=45°,则MN=_____.2、如图,ABC中,∠BAC>90°,BC=4,将ABC绕点C按顺时针方向旋转90°,点B的对应点落在BA的延长线上,若sin∠AC=0.8,则AC=___.3、在矩形ABCD中,BC=3AB,点P在直线BC上,且PC=AB,则∠APB的正切值为__________________.4、如图,以BC为直径作圆O,A,D为圆周上的点,ADBC,AB=CD=AD=1.若点P为BC垂直平分线MN上的一动点,则阴影部分图形的周长最小值为__________.5、若点在反比例函数的图象上,则的值为__________.6、如图,△ABC的顶点是正方形网格的格点,则cos∠C=__________.7、计算:______.8、如图,在网格中,小正方形的边长均为1,点都在格点上,则的正弦值是_______.9、如图,在Rt△ABC中,∠C=90°,BC=2,AC=2,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F.若△AB′F为直角三角形,则AE的长为____或___10、构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至D,使BD=AB,连接AD,得∠D=15°,所以tan15°2.类比这种方法,计算tan22.5°的值为___
立即下载