一次函数的应用题分类总结整理剖析.pdf
上传人:是你****岺呀 上传时间:2024-09-11 格式:PDF 页数:11 大小:369KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

一次函数的应用题分类总结整理剖析.pdf

一次函数的应用题分类总结整理剖析.pdf

预览

免费试读已结束,剩余 1 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一次函数的应用题分类总结整理剖析(word版可编辑修改)一次函数的应用题分类总结整理剖析(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(一次函数的应用题分类总结整理剖析(word版可编辑修改))的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为一次函数的应用题分类总结整理剖析(word版可编辑修改)的全部内容。1一次函数的应用题分类总结整理剖析(word版可编辑修改)一次函数应用一、确定解析式的几种方法:1.根据实际意义直接写出一次函数表达式,然后解决相应问题;(直表法)2。已经明确函数类型,利用待定系数法构建函数表达式;(待定系数法)3.利用问题中各个量之间的关系,变形推导所求两个变量之间的函数关系式;(等是变形法)二、重点题型1.根据各类信息猜测函数类型为一次函数,并验证猜想;2.运用函数思想,构建函数模型解决(最值、决策)问题(一)、根据实际意义直接写出一次函数表达式,然后解决相应问题特点:当所给问题中的两个变量间的关系非常明了时,可以根据二者之间的关系直接写出关系式,然后解决问题,1.某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).(1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式;(2)对x的取值情况进行分析,说明按哪种优惠方法购买比较便宜;(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.2,某实验中学组织学生到距学校6千米的光明科技馆去参观,学生王琳因事没能乘上学校的校车,于是准备在学校门口改乘出租车去光明科技馆,出租车的收费标准为:3千米以下(含3千米)收费8元,3千米以上,每增加1千米,收费1.8元.(1)写出出租车行驶的里程数x与费用y之间的解析式.(2)王彬身上仅有14元,乘出租车到科技馆的车费够不够?请你说明理由.3、某市电话的月租费是20元,可打60次免费电话(每次3分钟),超过60次后,超过部分每次0.13元.(1)写出每月电话费y(元)与通话次数x之间的函数关系式;(分段函数)(2)分别求出月通话50次、100次的电话费;(3)如果某月的电话费是27。8元,求该月通话的次数。4、我市某地一家农工商公司收获的一种绿色蔬菜,共140吨,若在市场上直接销售,每吨利润为1000元,经粗加工后,每吨利润可达4500元,经细加工后,每吨利润为6500元.该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果对蔬菜进行精加工,每天可加工6吨;但两种加工方式不能同时进行,受季节等条件限制,公司必须在15天内(含15天)将这批蔬菜全部销售或加工完毕。为此公司研制2一次函数的应用题分类总结整理剖析(word版可编辑修改)了两种可行方案:方案一:尽可能多地对蔬菜进行精加工,没有来得及进行加工的蔬菜,在市场上直接出售.方案二:将一部分蔬菜进行精加工,其余蔬菜进行粗加工。⑴写出方案一所获利润W1;⑵求出方案二所获利润W2(元)与精加工蔬菜数x(吨)之间的函数关系式;⑶你认为任何安排加工(或直接销售)使公司获利最多?最大利润是多少?5、为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过7立方米时,每立方米收费1.0元并加收0.2元的城市污水处理费,超过7立方米的部分每立方米收费1.5元并加收0.4元的城市污水处理费,设某户每月用水量为x(立方米),应交水费为y(元)(1)分别写出用水未超过7立方米和多于7立方米时,y与x之间的函数关系式;(2)如果某单位共有用户50户,某月共交水费514。6元,且每户的用水量均未超过10立方米,求这个月用水未超过7立方米的用户最多可能有多少户?6、已知雅美服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M,N两种型号的时装共80套。已知做一套M型号的时装需要A种布料0。6米,B种布料0.9米,可获利润45元;做一套N型号的时装需要A种布料1。1米,B种布料0.4米,可获利润50元.若设生产N种型号的时装套数为x,用这批布料生产这两种型号的时装所获总利润为y元.(1)求y与x的函数关系式