模式识别试题及总结.docx
上传人:王子****青蛙 上传时间:2024-09-13 格式:DOCX 页数:10 大小:481KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

模式识别试题及总结.docx

模式识别试题及总结.docx

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。(1)无监督分类(2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。(1)(2)(3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。(1)({A,B},{0,1},{A®01,A®0A1,A®1A0,B®BA,B®0},A)(2)({A},{0,1},{A®0,A®0A},A)(3)({S},{a,b},{S®00S,S®11S,S®00,S®11},S)(4)({A},{0,1},{A®01,A®0A1,A®1A0},A)9、影响层次聚类算法结果的主要因素有(计算模式距离的测度、(聚类准则、类间距离门限、预定的类别数目))。10、欧式距离具有(1、2);马式距离具有(1、2、3、4)。(1)平移不变性(2)旋转不变性(3)尺度缩放不变性(4)不受量纲影响的特性11、线性判别函数的正负和数值大小的几何意义是(正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。)。12、感知器算法1。(1)只适用于线性可分的情况;(2)线性可分、不可分都适用。13、积累势函数法较之于H-K算法的优点是(该方法可用于非线性可分情况(也可用于线性可分情况));位势函数K(x,xk)与积累位势函数K(x)的关系为()。14、在统计模式分类问题中,聂曼-皮尔逊判决准则主要用于(某一种判决错误较另一种判决错误更为重要)情况;最小最大判决准则主要用于(先验概率未知的)情况。15、“特征个数越多越有利于分类”这种说法正确吗?(错误)。特征选择的主要目的是(从n个特征中选出最有利于分类的的m个特征(m<n),以降低特征维数)。一般在(可分性判据对特征个数具有单调性)和(Cnm>>n)的条件下,可以使用分支定界法以减少计算量。16、散度Jij越大,说明wi类模式与wj类模式的分布(差别越大);当wi类模式与wj类模式的分布相同时,Jij=(0)。17、已知有限状态自动机Af=(å,Q,d,q0,F),å={0,1};Q={q0,q1};d:d(q0,0)=q1,d(q0,1)=q1,d(q1,0)=q0,dω1:{a,d};ω2:{b,c})。18、影响聚类算法结果的主要因素有(②③④)。①已知类别的样本质量;②分类准则;③特征选取;④模式相似性测度。19、模式识别中,马式距离较之于欧式距离的优点是(③④)。①平移不变性;②旋转不变性;③尺度不变性;④考虑了模式的分布。20、基于二次准则函数的H-K算法较之于感知器算法的优点是(①③)。①可以判别问题是否线性可分;②其解完全适用于非线性可分的情况;③其解的适应性更好;④计算量小。21、影响基本C均值算法的主要因素有(④①②)。①样本输入顺序;②模式相似性测度;③聚类准则;④初始类心的选取。22、位势函数法的积累势函数K(x)的作用相当于Bayes判决中的(②④)。①先验概率;②后验概率;③类概率密度;④类概率密度与先验概率的乘积。23、在统计模式分类问题中,当先验概率未知时,可以使用(②④)。①最小损失准则;②最小最大损失准则;③最小误判概率准则;④N-P判决。24、在(①③)情况下,用分支定界法做特征选择计算量相对较少。①Cnd>>n,(n为原特征个数,d为要选出的特征个数);②样本较多;③选用的可分性判据J对特征数目单调不减;④选用的可分性判据J具有可加性。25、散度JD是根据(③)构造的可分性判据。①先验概率;②后验概率;③类概率密度;④信息熵;⑤几何距离。26、似然函数的概型已知且为单峰,则可用(①②③④⑤)估计该似然函数。①矩估计;②最大似然估计;③Bayes估计;④Bayes学习;⑤Parzen窗法。27、Kn近邻元法较之Parzen窗法的优点是(②)。①所需样本数较少;②稳定性较好;③分辨率较高;④连续性较好。28、从分类的角度讲,用DKLT做特征提取主要利用了DKLT的性质:(①③)