第二次月考滚动检测卷-重庆市北山中学数学九年级下册锐角三角函数综合测评试题(含答案解析).docx
上传人:夏萍****文章 上传时间:2024-09-12 格式:DOCX 页数:7 大小:284KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

第二次月考滚动检测卷-重庆市北山中学数学九年级下册锐角三角函数综合测评试题(含答案解析).docx

第二次月考滚动检测卷-重庆市北山中学数学九年级下册锐角三角函数综合测评试题(含答案解析).docx

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

重庆市北山中学数学九年级下册锐角三角函数综合测评考试时间:90分钟;命题人:校数学教研室考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、的相反数是()A.B.C.D.2、如图,为测量小明家所住楼房的楼高,小明从楼底A出发先沿水平方向向左行走到达点C,再沿坡度的斜坡行走104米到达点D,在D处小明测得楼底点A处的俯角为,楼顶最高处B的仰角为,所在的直线垂直于地面,点A、B、C、D在同一平面内,则的高度约为()米.(参考数据:,,,,,)A.104B.106C.108D.1103、在直角△ABC中,,,AC=2,则tanA的值为()A.B.C.D.4、如图,在平面直角坐标系中,直线与轴交于点C,与反比例函数在第一象限内的图象交于点B,连接BO,若,,则的值是()A.20B.20C.-5D.55、在Rt△ABC中,∠C=90°,AC=5,BC=3,则sinA的值是()A.B.C.D.6、式子sin45°+sin60°﹣2tan45°的值是()A.22B.C.2D.27、已知正三角形外接圆半径为,这个正三角形的边长是()A.B.C.D.8、如图1所示,△DEF中,∠DEF=90°,∠D=30°,B是斜边DF上一动点,过B作AB⊥DF于B,交边DE(或边EF)于点A,设BD=x,△ABD的面积为y,图2是y与x之间函数的图象,则△ABD面积的最大值为()A.8B.16C.24D.489、如图,在矩形ABCD中,对角线AC,BD相交于点O,AB=6,∠DAC=60°,点F在线段AO上从点A至点O运动,连接DF,以DF为边作等边三角形DFE,点E和点A分别位于DF两侧,下列结论:①∠BDE=∠EFC;②ED=EC;③∠ADF=∠ECF;④点E运动的路程是2,其中正确结论的序号为()A.①④B.①②③C.②③④D.①②③④10、在正方形网格中,每个小正方形的边长都是1,∠BAC的位置如图所示,则sin∠BAC的值为()A.B.C.D.第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题3分,共计30分)1、如图,点A、B、C都在格点上,则∠CAB的正切值为______.2、计算:sin30°-tan45°=____________.3、计算:______.4、如图,以BC为直径作圆O,A,D为圆周上的点,ADBC,AB=CD=AD=1.若点P为BC垂直平分线MN上的一动点,则阴影部分图形的周长最小值为__________.5、如图,在正方形中,对角线,相交于点O,点E在边上,且,连接交于点G,过点D作,连接并延长,交于点P,过点O作分别交、于点N、H,交的延长线于点Q,现给出下列结论:①;②;③;④.其中正确的结论有________(填入正确的序号).6、若x为锐角,且cos(x﹣20°)=,则x=___.7、如图,圆内接正十二边形由边长相等的六个正方形和六个等边三角形拼成,则图1中cos∠AOB=___,若圆O半径为,则图2中△BCD的面积为___.8、正方形ABCD和正△AEF都内接于⊙O,EF与BC,CD分别相交于点G,H,求=____________9、矩形ABCD中,E为边AB上一点,将沿DE折叠,使点A的对应点F恰好落在边BC上,连接AF交DE于点N,连接BN.若,.(1)矩形ABCD的面积为________;(2)的值为_________.10、如图,在上述网格中,小正方形的边长均为1,点A,B,O都在格点上,则∠AOB的正弦值是______.三、解答题(5小题,每小题10分,共计50分)1、如图,在△ABC中,∠B=30°,BC=40cm,过点A作AD⊥BC,垂足为D,∠ACD=75°.(1)求点C到AB的距离;(2)求线段AD的长度.2、如图,在Rt△ABC中,∠BAC=90°,点E是BC的中点,AD⊥BC,垂足为点D,已知AB=20,;求:(1)求线段AE的长;(2)求cos∠DAE的值.3、计算:.4、先化简,再求代数式的值,其中.5、如图,某学校新建了一座雕塑CD,小林站在距离雕塑3.5米的A处自B点看雕塑头顶D的仰角为60°,看雕塑底部C的仰角为45°,求雕塑CD的高度.(最后结果精
立即下载