如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
第20讲列方程解应用题内容概述列方程解决问题是一种很重要的通法,以前我们往往将应用题分成:鸡兔同笼、年龄问题、还原问题等等,再归纳出每一类问题的解法.而现在我们就可以利用方程统一来考虑这些问题.方程思想的建立可以说是一个很大的飞跃.下面我们就如何找好等量关系,如何建立方程给出一些示范,希望大家体会掌握以提高自己的解题能力.典型问题1.有一篮子鸡蛋分给若干人,第一人拿走1个鸡蛋和余下的,第二人拿走2个和余下的,第三人拿走3个和余下的,……,最后恰好分完,并且每人分到的鸡蛋数相同,问:共有多少鸡蛋?分给几个人?【分析与解】设原有个鸡蛋,那么第一人拿了个鸡蛋,第二人拿了个鸡蛋.解得,则第一人拿了个鸡蛋,所以共有64÷8=8人.即共有64个鸡蛋,分给8个人.2.某人每日下午5时下班后有一辆汽车按时接他回家.有一天,他提前l小时下班,因汽车未到,遂步行返家,在途中遇到来接他的汽车,因而比平日早16分钟到家,问此人是步行几分钟后遇见汽车的?【分析与解】设此人在步行分钟以后遇见汽车,汽车的速度为“1”,汽车从家到单位需要分钟.由家到单位的总路程为,如果汽车在4时就在单位接他,他应该提前1小时到家,但是现在只提前16分钟到家,说明相对汽车他在分钟这段路程上耽搁44分钟,所以汽车走这段路程只需要-44分钟.而汽车是从5:00-从家出发,在4:00+达到相遇点.所以行驶-60分钟.,有.所以,此人是在步行52分钟后遇见汽车的.3.一次数学竞赛中共有A、B、C三道题,25名参赛者每人至少答对了一题.在所有没有答对A的学生中,答对B的人数是答对C的人数的两倍,只答对问题A的人数比既答对A又至少答对其他一题的人数多1.又已知在所有恰好答对一题的参赛者中,有一半没有答对A.请问有多少学生只答对B?【分析与解】设不只答对A的为人,仅答对B的为人,没有答对A但答对B与C的为z人.解得:,=7时,、都是正整数,所以。故只答对B的有6人.4.河水是流动的,在Q点处流入静止的湖中,一游泳者在河中顺流从P到Q,然后穿过湖到R,共用3小时.若他由R到Q再到P,共需6小时.如果湖水也是流动的,速度等于河水的速度,那么从P到Q再到R需小时.问在这样的条件下,从R到Q再到P需几小时?【分析与解】设游泳者的速度为1,水速为y,PQ=a,QR=b,则有:,且有1+y、1—y、y均不为0.①-②得,即……………………………………………………………………④③-①得,即………………………………………………………………⑤由②、④、⑤得,即.于是,.由②得.小时.即题中所述情况下从R到Q再到P需小时.第21讲行程与工程内容概述运动路线或路况复杂,与周期性或数论知识相关联,需进行优化设计等具有相当难度的行程问题.工作效率发生改变,要完成的项目及参加工作的对象较多的工程问题.典型问题1。如图21-l,A至B是下坡,B至C是平路,C至D是上坡.小张和小王在上坡时步行速度是每小时4千米,平路时步行速度是每小时5千米,下坡时步行速度是每小时6千米.小张和小王分别从A和D同时出发,1小时后两人在E点相遇.已知E在BC上,并且E至C的距离是B至C距离的.当小王到达A后9分钟,小张到达D.那么A至D全程长是多少千米?【分析与解】BE是BC的,CE是BC的,说明DC这段下坡,比AB这段下坡所用的时间多,也就是DC这一段,比AB这一段长,因此可以在DC上取一段DF和AB一样长,如下图:另外,再在图上画出一点G,使EG和EC一样长,这样就表示出,小王从F到C.小张从B到G.小王走完全程比小张走完全程少用9分钟,这时因为小张走C至F是上坡,而小王走F至C是下坡(他们两人的其余行程走下坡、平路、上坡各走一样多).因此,小王从F至C,走下坡所用时间是9÷=18(分钟).因此得出小张从B至G也是用18分钟,走GE或CE都用6分钟.走B至C全程(平路)要30分钟.从A至曰下坡所用时间是60-18-6=36(分钟);从D至C下坡所用时间是60-6=54(分钟);A至D全程长是(36+54)×+30×=11.5千米.2.如图2l-2,A,B两点把一个周长为l米的圆周等分成两部分.蓝精灵从B点出发在这个圆周上沿逆时针方向做跳跃运动,它每跳一步的步长是米,如果它跳到A点,就会经过特别通道AB滑向曰点,并从B点继续起跳,当它经过一次特别通道,圆的半径就扩大一倍.已知蓝精灵跳了1000次,那么跳完后圆周长等于多少米?【分析与解】×4=即蓝精灵跳4次到A点.圆半径扩大一倍即乘以2后,跳8次到A点.圆半径乘以4后,跳16次到A点.依次类推,由于4+8+16+32+64+