达标测试湖南临湘市第二中学数学九年级下册锐角三角函数专题练习试卷(解析版含答案).docx
上传人:努力****甲寅 上传时间:2024-09-12 格式:DOCX 页数:7 大小:256KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

达标测试湖南临湘市第二中学数学九年级下册锐角三角函数专题练习试卷(解析版含答案).docx

达标测试湖南临湘市第二中学数学九年级下册锐角三角函数专题练习试卷(解析版含答案).docx

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

湖南临湘市第二中学数学九年级下册锐角三角函数专题练习考试时间:90分钟;命题人:校数学教研室考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、如图,AB是河堤横断面的迎水坡,堤高AC=,水平距离BC=1,则斜坡AB的坡度为()A.B.C.30°D.60°2、如图,用一块直径为4的圆桌布平铺在对角线长为4的正方形桌面上,若四周下垂的最大长度相等,则桌布下垂的最大长度为()A.B.C.D.3、如图,在边长为2的正方形ABCD中,E,F分别为BC,CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q.下列结论错误的是()A.AE⊥BFB.QB=QFC.cos∠BQP=D.S四边形ECFG=S△BGE4、如图1所示,△DEF中,∠DEF=90°,∠D=30°,B是斜边DF上一动点,过B作AB⊥DF于B,交边DE(或边EF)于点A,设BD=x,△ABD的面积为y,图2是y与x之间函数的图象,则△ABD面积的最大值为()A.8B.16C.24D.485、小金将一块正方形纸板按图1方式裁剪,去掉4号小正方形,拼成图2所示的矩形,若已知AB=9,BC=16,则3号图形周长为()A.B.C.D.6、的值为()A.1B.2C.D.7、在中,,则的值是()A.B.C.D.8、如图,将ABC放在每个小正方形的边长为1的网格中,点A,B,C均在格点上,则∠A的正切值是()A.B.C.2D.9、如图,过点O、A(1,0)、B(0,)作⊙M,D为⊙M上不同于点O、A的点,则∠ODA的度数为()A.60°B.60°或120°C.30°D.30°或150°10、在Rt△ABC中,∠C=90°,AC=4,BC=3,则下列选项正确的是()A.sinA=B.cosA=C.cosB=D.tanB=第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题3分,共计30分)1、如图,AB为半圆O的直径,点C为半圆上的一点,CD⊥AB于点D,若AB=10,CD=4,则sin∠BCD的值为____.2、计算:______.3、如图,“心”形是由抛物线和它绕着原点O,顺时针旋转60°的图形经过取舍而成的,其中顶点C的对应点为D,点A,B是两条抛物线的两个交点,点E,F,G是抛物线与坐标轴的交点,则_______________.4、_______.5、如图,小明家附近有一观光塔CD,他发现当光线角度变化时,观光塔的影子在地面上的长度也发生变化.经测量发现,当小明站在点A处时,塔顶D的仰角为37°,他往前再走5米到达点B(点A,B,C在同一直线上),塔顶D的仰角为53°,则观光塔CD的高度约为_____.(精确到0.1米,参考数值:tan37°≈,tan53°≈)6、在△ABC中,∠A,∠C都是锐角,cosA=,sinC=,则∠B=________.7、如图,在正方形ABCD中,点E是AD的中点,点O是AC的中点,AC与BE交于点F,AG⊥BE,CH⊥BE,垂足分别为G,H,连接OH,OG,CG.下列结论:①CH﹣AG=HG;②AG=HG;③BH=OG;④AF∶OF∶OC=2∶1∶3;⑤5S△AFG=S△GHC;⑥OG•AC=BH•CD.其中结论正确的序号是________.8、△ABC中,∠B为锐角,cosB=,AB=,AC=2,则∠ACB的度数为________.9、如图,在Rt△ABC中,∠C=90°,AC=2,BC=2.以点A为圆心,AC长为半径作弧交AB于点D,再以点B为圆心,BD长为半径作弧交BC于点E,则图中阴影部分的面积为______.10、如图,是拦水坝的横断面,堤高为6米,斜面坡度为,则斜坡的长为_______米.三、解答题(5小题,每小题10分,共计50分)1、如图,已知矩形ABCD(AB<AD).(1)请用直尺和圆规按下列步骤作图,保留作图痕迹:①以点A为圆心,以AD长为半径画弧交边BC于点E,连接AE;②在线段CD上作一点F,使得∠EFC=∠BEA;③连接EF.(2)在(1)作出的图形中,若AB=4,AD=5,求tan∠DAF的值.2、如图,的弦AB与直径CD交于点G,点C是优弧ACB的中
立即下载