考点攻克河南郑州桐柏一中数学九年级下册锐角三角函数专题攻克试题(详解版).docx
上传人:森林****io 上传时间:2024-09-12 格式:DOCX 页数:7 大小:260KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

考点攻克河南郑州桐柏一中数学九年级下册锐角三角函数专题攻克试题(详解版).docx

考点攻克河南郑州桐柏一中数学九年级下册锐角三角函数专题攻克试题(详解版).docx

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

河南郑州桐柏一中数学九年级下册锐角三角函数专题攻克考试时间:90分钟;命题人:校数学教研室考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、式子sin45°+sin60°﹣2tan45°的值是()A.22B.C.2D.22、如图,在平面直角坐标系中,直线与轴交于点C,与反比例函数在第一象限内的图象交于点B,连接BO,若,,则的值是()A.20B.20C.-5D.53、如图,在ABC中,∠C=90°,∠ABC=30°,D是AC的中点,则tan∠DBC的值是()A.B.C.D.4、在Rt△ABC中,∠C=90°,AC=4,BC=3,则下列选项正确的是()A.sinA=B.cosA=C.cosB=D.tanB=5、将矩形纸片ABCD按如图所示的方式折起,使顶点C落在C′处,若AB=4,DE=8,则sin∠C′ED为()A.2B.C.D.6、如图,小王在高台上的点A处测得塔底点C的俯角为α,塔顶点D的仰角为β,已知塔的水平距离AB=a,则此时塔高CD的长为()A.asinα+asinβB.atanα+atanβC.D.7、在△ABC中,∠ACB=90°,AC=1,BC=2,则sinB的值为()A.B.C.D.8、在中,∠C=90°,∠A、∠B、∠C的对边分别为、、,则下列式子一定成立的是()A.B.C.D.9、如图,E是正方形ABCD边AB的中点,连接CE,过点B作BH⊥CE于F,交AC于G,交AD于H,下列说法:①;②点F是GB的中点;③;④S△AHG=S△ABC.其中正确的结论的序号是()A.①②③B.①③C.②④D.①③④10、如图,点为边上的任意一点,作于点,于点,下列用线段比表示的值,正确的是()A.B.C.D.第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题3分,共计30分)1、计算的结果为______.2、已知斜坡AB的水平宽度为12米,斜面坡度为,则斜坡AB的长为________;坡角为________.3、若一个小球由桌面沿着斜坡向上前进了10cm,此时小球距离桌面的高度为5cm,则这个斜坡的坡度为______.4、如果斜坡的坡度为1∶3,斜坡高为4米,则此斜坡的长为___________米5、如图,在中,,,,以为边向外作等边,则的长为_______.6、如图,在平面直角坐标系中,有一个,∠ABO=90°,∠AOB=30°,直角边OB在y轴正半轴上,点A在第一象限,且OA=1,将绕原点逆时针旋转30°,同时把各边长扩大为原来的两倍(即OA1=2OA).得到,同理,将绕原点O逆时针旋转30°,同时把各边长扩大为原来的两倍,得到,…,依此规律,得到,则的长度为_________.7、如图,AB为半圆O的直径,点C为半圆上的一点,CD⊥AB于点D,若AB=10,CD=4,则sin∠BCD的值为____.8、在正方形ABCD中,AB=2,点E是BC边的中点,连接DE,延长EC至点F,使得EF=DE,过点F作FG⊥DE,分别交CD、AB于N、G两点,连接CM、EG、EN,下列正确的是______.①tan∠GFB=.②MN=NC;③.④S四边形GBEM=.9、如图,在菱形ABCD中,DE⊥AB,,则tan∠DBE=__________.10、比较大小:tan46°_____cos46°.三、解答题(5小题,每小题10分,共计50分)1、某镇为创建特色小镇,助力乡村振兴,决定在辖区的一条河上修建一座步行观光桥.如图,河旁有一座小山,山高,点、与河岸、在同一水平线上,从山顶处测得河岸和对岸的俯角分别为,.若在此处建桥,求河宽的长.(结果精确到)[参考数据:,,2、如图,AB是⊙O的弦,OP⊥OA交AB于点P,过点B的直线交OP的延长线于点C,且BC是⊙O的切线.(1)判断△CBP的形状,并说明理由;(2)若OA=6,OP=2,求CB的长;(3)设△AOP的面积是S1,△BCP的面积是S2,且,若⊙O的半径为6,BP=4,求tan∠APO.3、如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,以CD为直径的⊙O分别交AC,BC于点E,F两点,过点F作FG⊥AB于点G.(1)求证:FG是⊙O的切
立即下载