专题对点练习江苏南通市田家炳中学数学九年级下册锐角三角函数必考点解析试卷(解析版含答案).docx
上传人:诗文****仙女 上传时间:2024-09-12 格式:DOCX 页数:8 大小:266KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

专题对点练习江苏南通市田家炳中学数学九年级下册锐角三角函数必考点解析试卷(解析版含答案).docx

专题对点练习江苏南通市田家炳中学数学九年级下册锐角三角函数必考点解析试卷(解析版含答案).docx

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

江苏南通市田家炳中学数学九年级下册锐角三角函数必考点解析考试时间:90分钟;命题人:校数学教研室考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、如图,在△ABC中,∠C=90°,BC=1,AB=,则下列三角函数值正确的是()A.sinA=B.tanA=2C.cosB=2D.sinB=2、某山坡坡面的坡度,小刚沿此山坡向上前进了米,小刚上升了()A.米B.米C.米D.米3、如图,有一个弓形的暗礁区,弓形所含的圆周角,船在航行时,为保证不进入暗礁区,则船到两个灯塔A,B的张角应满足的条件是()A.B.C.D.4、将矩形纸片ABCD按如图所示的方式折起,使顶点C落在C′处,若AB=4,DE=8,则sin∠C′ED为()A.2B.C.D.5、如图,在网格中,小正方形的边长均为1,点A、B、C都在格点上,则的正弦值是()A.2B.C.D.6、如图,PA、PB分别切⊙O于A,B,∠APB=60°,⊙O半径为2,则PB的长为()A.3B.4C.D.7、如图,为测量小明家所住楼房的楼高,小明从楼底A出发先沿水平方向向左行走到达点C,再沿坡度的斜坡行走104米到达点D,在D处小明测得楼底点A处的俯角为,楼顶最高处B的仰角为,所在的直线垂直于地面,点A、B、C、D在同一平面内,则的高度约为()米.(参考数据:,,,,,)A.104B.106C.108D.1108、已知正三角形外接圆半径为,这个正三角形的边长是()A.B.C.D.9、在Rt△ABC中,∠C=90°,AC=5,BC=3,则sinA的值是()A.B.C.D.10、式子sin45°+sin60°﹣2tan45°的值是()A.22B.C.2D.2第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题3分,共计30分)1、若点在反比例函数的图象上,则的值为__________.2、如图,直线MN过正方形ABCD的顶点A,且∠NAD=30°,AB=2,P为直线MN上的动点,连BP,将BP绕B点顺时针旋转60°至BQ,连CQ,CQ的最小值是___.3、=_______.4、如图,等腰直角三角形ABC,∠C=90°,AC=BC=4,M为AB的中点,∠PMQ=45°,∠PMQ的两边分别交BC于点P,交AC于点Q,若BP=3,则AQ=_____.5、如图,将ABCD沿AE折叠,点D恰好落在BC边上的点F处.如果,那么的值是__________6、如图,△ABC的顶点是正方形网格的格点,则cos∠C=__________.7、如图,四个小正方形的边长都是1,若以O为圆心,OG为半径作弧分别交AB,CD于点E,F,则弧EF的长是_________.8、如图,菱形ABCD中,∠ABC=120°,AB=1,延长CD至A1,使DA1=CD,以A1C为一边,在BC的延长线上作菱形A1CC1D1,连接AA1,得到△ADA1;再延长C1D1至A2,使D1A2=C1D1,以A2C1为一边,在CC1的延长线上作菱形A2C1C2D2,连接A1A2,得到△A1D1A2…按此规律,得到△A2020D2020A2021,记△ADA1的面积为S1,△A1D1A2的面积为S2…,△A2020D2020A2021的面积为S2021,则S2021=____.9、如图,大坝的横截面是一个梯形,坝顶宽,坝高,斜坡的坡度,斜坡的坡度,则坡底宽__________.10、如图,在A处测得点P在北偏东60°方向上,在B处测得点P在北偏东30°方向上,若AP=6千米,则A,B两点的距离为_____千米.三、解答题(5小题,每小题10分,共计50分)1、在一次课题学习中,老师让同学们合作编题,某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解:如图,将矩形ABCD的四边BA,CB,DC,AD分别延长至E,F,G,H,使得,,连接EF,FG,GH,HE.(1)判断四边形EFGH的形状,并证明;(2)若矩形ABCD是边长为1的正方形,且,,求AE的长.2、(1)计算:2•cos30°﹣(﹣1)2021;(2)解方程组:.3、计算:2sin30°﹣3tan45°•sin245°+cos60°.4、图1、图2分别是某型号
立即下载