如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
初一数学基本知识点总结(精品多篇)编辑:初一数学基本知识点总结(精品多篇)为的会员投稿推荐,但愿对你的学习工作带来帮助。七年级数学知识点总结篇一二元一次方程组1、二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程。注意:一般说二元一次方程有无数个解。2、二元一次方程组:两个二元一次方程联立在一起是二元一次方程组。3、二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解。注意:一般说二元一次方程组只有解(即公共解)。4、二元一次方程组的解法:(1)代入消元法;(2)加减消元法;(3)注意:判断如何解简单是关键。※5.一次方程组的应用:(1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则难列易解(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系。一元一次不等式(组)1、不等式:用不等号,把两个代数式连接起来的式子叫不等式。2、不等式的基本性质:不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变。3、不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不等式的解集。4、一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b0或ax+b0,(a0)。5、一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质3的应用;注意:在数轴上表示不等式的解集时,要注意空圈和实点。数学初一知识点总结篇二知识点、概念总结1、不等式:用符号"","≤","≥"表示大小关系的式子叫做不等式。2、不等式分类:不等式分为严格不等式与非严格不等式。一般地,用纯粹的大于号、小于号">","3、不等式的解:使不等式成立的未知数的值,叫做不等式的解。4、不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。5、不等式解集的表示方法:(1)用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x-1≤2的解集是x≤3(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。6、解不等式可遵循的一些同解原理(1)不等式F(x)F(x)同解。(2)如果不等式F(x)(3)如果不等式F(x)0,那么不等式F(x)7、不等式的性质:(1)如果x>y,那么yy;(对称性)(2)如果x>y,y>z;那么x>z;(传递性)(3)如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法则)(4)如果x>y,z>0,那么xz>yz;如果x>y,z(5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z(6)如果x>y,m>n,那么x+m>y+n(充分不必要条件)(7)如果x>y>0,m>n>0,那么xm>yn(8)如果x>y>0,那么x的n次幂>y的n次幂(n为正数)8、一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。9、解一元一次不等式的一般顺序:(1)去分母(运用不等式性质2、3)(2)去括号(3)移项(运用不等式性质1)(4)合并同类项(5)将未知数的系数化为1(运用不等式性质2、3)(6)有些时候需要在数轴上表示不等式的解集10、一元一次不等式与一次函数的综合运用:一般先求出函数表达式,再化简不等式求解。11、一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。12、解一元一次不等式组的步骤:(1)求出每个不等式的解集;(2)求出每个不等式的解集的公共部分;(一般利用数轴)(3)用代数符号语言来表示公共部分。(也可以说成是下结论)13、解不等式的诀窍(1)大于大于取大的(大大大);例如:X>-1,X>2,不等式组的解集是X>2(2)小于小于取小的(小小小);例如:X(3)大于小于交叉取中间;(4)无公共部分分开无解了;14、解不等式组的口诀(1)同大取大例如,x>2,x>3,不等式组的解集是X>3(2)同小取小例如,x(3)大小小大中间找例如,x1,不等式组的解集是1(4)大大小小不用找例如,x3,不等式组无解15、应用不等式