数据分析师工作总结(汇总18篇).docx
上传人:小多****多小 上传时间:2024-09-09 格式:DOCX 页数:43 大小:63KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

数据分析师工作总结(汇总18篇).docx

数据分析师工作总结(汇总18篇).docx

预览

免费试读已结束,剩余 33 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

数据分析师工作总结(汇总18篇)通过总结,我们可以更好地认识自己的能力和不足,从而选择适合自己的学习或工作方法。在写总结时应该将个人的经历和所学知识相结合,避免空泛。以下是一些总结写作的技巧和方法,希望对大家的写作有所帮助。数据分析师工作总结篇一性别:男。民族:汉族。籍贯:浙江宁波。现居住地:宁波。婚姻状况:手机:87******。身份证:3302*********。邮箱:job@。求职意向。期望行业:金融。期望地点:宁波。期望月薪:5000。工作性质:全职。到岗时间:随时。工作经验。起讫时间:10月至12月公司名称:xx估计有限公司职位描述:主要负责公司评级数据的核收整理,还有就是负责外部数据的收集;组建公司数据库系统,参与公司数据产品的开发工作,并制作数据产品。起讫时间:202月至8月公司名称:xx科技发展有限公司职位描述:主要是完成数据分析项目过程中的数据提取,数据分析和数据展示工作;另外开发并持续完善公司各项业务的数据的统计分析模型,确保其准确性、实用性以及可衡量性;能够基于数据分析,得到有价值的信息,从而为公司的运营决策、产品方向、销售策略提供数据支持。教育经验。语言能力/技能证书。自我评价。本人具有较强的统筹沟通能力,具有较强的团队合作能力,性格开朗生活乐观,责任心强。对数据有很高的.敏感度,能发现数据之间的联系,具有突出的逻辑思维能力和分析判断能力,能熟练运用数据的处理及分析方法,熟练掌握spss,sas等统计软件。数据分析师工作总结篇二年龄:25。教育经历:院校:蓝翔技校。专业:计算机软件。学历:专科。主修课程:数据库原理、软件工程。获奖情况:连续2年获得校三好学生、二等学习优秀奖学金。全国大学生计算机竞赛市二等奖。项目经验:201x、1x-至今。单位:翰威特咨询公司分公司。筛选分析调研数据,使用excel处理超过2万个样本数据,具有丰富的数据处理经验;自我评价:本人性格开朗,思想正直,诚信,稳重。工作认真踏实,责任心强,善于独立思考,分析问题,解决问题。数据分析师工作总结篇三数据分析方法是通过什么方法去组合数据从而展现规律的环节。从根本目的上来说,数据分析的任务在于抽象数据形成有业务意义的结论。因为单纯的数据是毫无意义的,直接看数据是没有办法发现其中的规律的,只有通过使用分析方法将数据抽象处理后,人们才能看出隐藏在数据背后的规律。数据分析方法选取是整个数据处理过程的核心,一般从分析的方法复杂度上来讲,我将其分为三个层级,即常规分析方法,统计学分析方法跟自建模型。我之所以这样区分有两个层面上的考虑,分别是抽象程度以及定制程度。其中抽象程度是说,有些数据不需要加工,直接转成图形的方式呈现出来,就能够表现出业务人员所需要的业务意义,但有些业务需求,直接把数据转化成图形是难以看出来的,需要建立数据模型,将多个指标或一个指标的多个维度进行重组,最终产生出新的数据来,那么形成的这个抽象的结果就是业务人员所需要的业务结论了。基于这个原则,可以划分出常规分析方法和非常规分析方法。那么另一个层面是定制程度,到今天数学的发展已经有很长的时间了,其中一些经典的分析方法已经沉淀,他们可以通用在多用分析目的中,适用于多种业务结论中,这些分析方法就属于通用分析方法,但有些业务需求确实少见,它所需要的分析方法就不可能完全基于通用方法,因此就会形成独立的分析方法,也就是专门的数学建模,这种情况下所形成的数学模型都是专门为这个业务主题定制的,因此无法适用于多个主题,这类分析方法就属于高度定制的,因此基于这一原则,将非常规分析方法细分为统计学分析方法和自建模型类。常规分析方法不对数据做抽象的处理,主要是直接呈现原始数据,多用于针对固定的指标、且周期性的分析主题。直接通过原始数据来呈现业务意义,主要是通过趋势分析和占比分析来呈现,其分析方法对应同环比及帕累托分析这两类。同环比分析,其核心目的在于呈现本期与往期之间的差异,如销售量增长趋势;而帕累托分析则是呈现单一维度中的各个要素占比的排名,比如各个地市中本期的销售量增长趋势的排名,以及前百分之八十的增长量都由哪几个地市贡献这样的结论。常规分析方法已经成为最为基础的分析方法,在此也不详细介绍了。统计学分析方法能够基于以往数据的规律来推导未来的趋势,其中可以分为多种规律总结的方式。根据原理多分为以下几大类,包括有目标结论的有指导学习算法,和没有目标结论的无指导学习算法,以及回归分析。另外无指导的学习算法因为没有一个给定的目标结论,因此是将指标之中所有有类似属性的数据分别合并在一起,形成聚类的结果。比如最经典的啤酒与尿布分析,业务人员希望了解啤酒跟什么搭配在一起卖会更容易让大家接受,因此需要把所有的购买数据都