如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
模式识别Chapter3CharacterRecognitionFeaturespaceCharacterRecognition模式识别系统宽度PatternRecognitionBayes’theoremingeneral大家学习辛苦了,还是要坚持Bayes’Decision:errorminimumBayes’Decision:riskminimumDiscriminantfunctionsDiscriminantfunctionsDiscriminantfunctionsDiscriminantfunctionsOverviewExampleExampleExampleExampleExampleChapter3Maximum-likelihoodandBayesianparameterestimationIntroductionProbabilityDensityEstimationProbabilityDensityEstimationProbabilityDensityEstimationProbabilityDensityEstimationProbabilityDensityEstimationMaximumLikelihoodEstimationMaximumLikelihoodEstimationMaximumLikelihoodEstimationMaximumLikelihoodEstimationExampleTheGaussiancase:UnknownExampleExampleExample3839BayesEstimation模式识别系统GaussianClassifiers假设独立等方差假设等协方差矩阵Lineardiscriminantfunction(LDF)GaussianClassifiersParameterEstimationofGaussianDensityMaximumLikelihood(ML)ParameterEstimationofGaussianDensityParametric分类器不好用吗--实际中很多类别的概率分布近似Gaussian--即使概率分布偏离Gaussian比较大,当特征维数高而训练样本少(Curseofdimensionality)时,Parametric分类器仍然比较好有时LDF甚至比QDF更好ML估计的好处:--训练计算量小(与类别数和样本数成线性关系)--高维情况下降维(特征选择、变换)经常是有益的Gaussian分类器的改进QDF的问题参数太多:与维数的平方成正比训练样本少时协方差矩阵奇异即使不奇异ML估计的泛化性能也不好Regularizeddiscriminantanalysis(RDA)通过平滑协方差矩阵克服奇异,同时提高泛化性能Wecoulddesignanoptionalclassifierifweknewthepriorprobabilitiesandconditionaldensities.Oneapproachisusethesamplestoestimatetheunknownprobabilitiesanddensities,andthentheresultingestimatesasiftheywerethetruevalues.