完整word版-勾股定理经典例题含答案资料-推荐文档.doc
上传人:白凡****12 上传时间:2024-09-11 格式:DOC 页数:10 大小:290KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

完整word版-勾股定理经典例题含答案资料-推荐文档.doc

完整word版-勾股定理经典例题含答案资料-推荐文档.doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

PAGE\*MERGEFORMAT10勾股定理经典例题含答案11页勾股定理是一个基本的初等几何定理,直角三角形两直角边的平方和等于斜边的平方。如果直角三角形两直角边为a和b,斜边为c,那么a²+b²=c²,若a、b、c都是正整数,(a,b,c)叫做勾股数组。勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类HYPERLINK"http://baike.baidu.com/view/991605.htm"\t"_blank"早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是HYPERLINK"http://baike.baidu.com/view/134322.htm"\t"_blank"数形结合的纽带之一。“勾三,股四,弦五”是勾股定理的一个最著名的HYPERLINK"http://baike.baidu.com/view/891808.htm"\t"_blank"例子。远在公元前约三千年的HYPERLINK"http://baike.baidu.com/view/48511.htm"\t"_blank"古巴比伦人就知道和应用勾股定理,还知道许多勾股数组。古埃及人也应用过勾股定理。在中国,西周的HYPERLINK"http://baike.baidu.com/view/781919.htm"\t"_blank"商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的HYPERLINK"http://baike.baidu.com/view/16578.htm"\t"_blank"毕达哥拉斯,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。类型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。解析:(1)在△ABC中,∠C=90°,a=6,c=10,b=(2)在△ABC中,∠C=90°,a=40,b=9,c=(3)在△ABC中,∠C=90°,c=25,b=15,a=举一反三【变式】:如图∠B=∠ACD=90°,AD=13,CD=12,BC=3,则AB的长是多少?【答案】∵∠ACD=90°AD=13,CD=12∴AC2=AD2-CD2=132-122=25∴AC=5又∵∠ABC=90°且BC=3∴由勾股定理可得AB2=AC2-BC2=52-32=16∴AB=4∴AB的长是4.类型二:勾股定理的构造应用2、如图,已知:在中,,,.求:BC的长.思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有,,再由勾股定理计算出AD、DC的长,进而求出BC的长.解析:作于D,则因,∴(的两个锐角互余)∴(在中,如果一个锐角等于,那么它所对的直角边等于斜边的一半).根据勾股定理,在中,.根据勾股定理,在中,.∴.举一反三【变式1】如图,已知:,,于P.求证:.解析:连结BM,根据勾股定理,在中,.而在中,则根据勾股定理有.∴又∵(已知),∴.在中,根据勾股定理有,∴.【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。解析:延长AD、BC交于E。∵∠A=∠60°,∠B=90°,∴∠E=30°。∴AE=2AB=8,CE=2CD=4,∴BE2=AE2-AB2=82-42=48,BE==。∵DE2=CE2-CD2=42-22=12,∴DE==。∴S四边形ABCD=S△ABE-S△CDE=AB·BE-CD·DE=类型三:勾股定理的实际应用(一)用勾股定理求两点之间的距离问题3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了到达B点,然后再沿北偏西30°方向走了500m到达目的地C点。(1)求A、C两点之间的距离。(2)确定目的地C在营地A的什么方向。解析:(1)过B点作BE//AD∴∠DAB=∠ABE=60°∵30°+∠CBA+∠ABE=180°∴∠CBA=90°即△ABC为直角三角形由已知可得:BC=500m,AB=由勾股定理可得:所以(2)在Rt△ABC中,∵BC=500m,AC=1000m∴∠CAB=30°∵∠DAB=60°∴∠DAC=30°即点C在点A的北偏东30°的方向举一反三【变式】一辆装满货物的卡车,其外形高2.5米,宽1.6米