如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
初中数学教案【通用】初中数学教案15篇作为一位兢兢业业的人民教师,往往需要进行教案编写工作,教案是教材及大纲与课堂教学的纽带和桥梁。那么教案应该怎么写才合适呢?下面是小编为大家收集的初中数学教案,希望能够帮助到大家。初中数学教案1教学目标1、理解有理数加法的意义,掌握有理数加法法则中的符号法则和绝对值运算法则;2、能根据有理数加法法则熟练地进行有理数加法运算,弄清有理数加法与非负数加法的区别;3、三个或三个以上有理数相加时,能正确应用加法交换律和结合律简化运算过程;4、通过有理数加法法则及运算律在加法运算中的运用,培养学生的运算能力;5、本节课通过行程问题说明有理数的加法法则的合理性,然后又通过实例说明如何运用法则和运算律,让学生感知到数学知识来源于生活,并应用于生活。教学建议(一)重点、难点分析本节教学的重点是依据有理数的加法法则熟练进行有理数的加法运算。难点是有理数的.加法法则的理解。(1)加法法则本身是一种规定,教材通过行程问题让学生了解法则的合理性。(2)具体运算时,应先判别题目属于运算法则中的哪个类型,是同号相加、异号相加、还是与0相加。(3)如果是同号相加,取相同的符号,并把绝对值相加。如果是异号两数相加,应先判别绝对值的大小关系,如果绝对值相等,则和为0;如果绝对值不相等,则和的符号取绝对值较大的加数的符号,和的绝对值就是较大的绝对值与较小的绝对值的差。一个数与0相加,仍得这个数。(二)知识结构(三)教法建议1、对于基础比较差的同学,在学习新课以前可以适当复习小学中算术运算以及正负数、相反数、绝对值等知识。2、有理数的加法法则是规定的,而教材开始部分的行程问题是为了说明加法法则的合理性。3、应强调加法交换律“a+b=b+a”中字母a、b的任意性。4、计算三个或三个以上的加法算式,应建议学生养成良好的运算习惯。不要盲目动手,应该先仔细观察式子的特点,深刻认识加数间的相互关系,找到合理的运算步骤,再适当运用加法交换律和结合律可以使加法运算更为简化。5、可以给出一些类似“两数之和必大于任何一个加数”的判断题,以明确由于负数参与加法运算,一些算术加法中的正确结论在有理数加法运算中未必也成立。6、在探讨导出有理数的加法法则的行程问题时,可以尝试发挥多媒体教学的作用。用动画演示人或物体在同一直线上两次运动的过程,让学生更好的理解有理数运算法则。初中数学教案2从不同方向看教学目标本节在介绍不等式的基础上,介绍了不等式的解集并用数轴表示,介绍了解简单不等式的方法,让学生进一步体会数形结合的作用。知识与能力1.使学生掌握不等式的解集的概念,以及什么是解不等式。2.使学生育能够借助数轴将不等式的解集直观地表示出来,初步理解数形结合的思想。过程与方法1.通过回忆给学生介绍不等式的解集的概念。2.教会学生怎样在数轴上表示不等式的解集。情感、态度与价值观1.通过反复的训练使学生认识到数轴的重要性,培养其数形结合的思想。2.通过观察、归纳、类比、推断而获得不等式的解集与数轴上的点之间的关系,体验数学活动充满探索性与创造性。教学重、难点及教学突破重点1.认识不等式的解集的概念。2.将不等式的解集表示在数轴上。难点学生对不等式的解是一个集合可能会不太理解。教学突破由于受方程思想的影响,学生对不等式的解集的接受和理解可能会有一定的困难,建议教师能结合简单的不等式和实际问题让学生体会不等式的解可以是一个集合,并组织学生讨论举例,加深理解。另外,应在本节的过程中让学生能理解在数轴上表示不等式的解集,让他们熟悉数形结合的思想。教学步骤一、新课导入1.回顾提问:同学们,我们已经学习了不等式。现在我们一起回顾一下什么是不等式,以及有关数轴的知识。学生用自己的语言描述不等式的定义,并基本说出数轴的三要素是:原点、正方向、单位长度。能将有理数在数轴上表示出来。2.创设情景:我们现在知道了不等式的解不唯一,那么我们如何将不等式的解全部表示出来呢?这就是我们这节课要解决的问题。二、不等式的解集1.讲述不等式的解集的定义,引导学生观察不等式x+2>5,并说出-3、-2、3.5、7中哪些是不等式的解,哪些不是?-3、-2不是不等式x+2>5的解,3.5、7是不等式的解。2.给出“解不等式”的概念,并就上述例题由不完全归纳法给出不等式x+2>5的解集是x>3。3.将x>3在数轴上表示出来,并以此图为例讲述在数轴上表示基本不等式的方法:(1)在数轴上找到3;(2)向右表示比3大的点;(3)空心点表示不含有3,所以有下图。让学生自己动手画出x≤3,并找学生上台板演。4.就学生在黑板上的板演,指出画图应注意的事项,并让学生观察前后两图的区别。通过对比两图的`不同,发现区别是大于和小于导致图上所取的方向不同,有等号和没等号导致空心和实心的区别。5.给出适当的例题,巩固本节内