三下数学教学计划.docx
上传人:lj****88 上传时间:2024-09-12 格式:DOCX 页数:52 大小:45KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

三下数学教学计划.docx

三下数学教学计划.docx

预览

免费试读已结束,剩余 42 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

三下数学教学计划三下数学教学计划时间过得可真快,从来都不等人,我们的工作又将在忙碌中充实着,在喜悦中收获着,现在就让我们制定一份计划,好好地规划一下吧。什么样的计划才是有效的呢?下面是小编精心整理的三下数学教学计划,仅供参考,大家一起来看看吧。三下数学教学计划1教学目标:1、知识目标:①了解位似图形及其有关概念;②了解位似图形上任意一对对应点到位似中心的距离之比等于位似比。2、能力目标:①利用图形的位似解决一些简单的实际问题;②在有关的学习和运用过程中发展学生的应用意识和动手操作能力。3、情感目标:①通过学习培养学生的合作意识;②通过探究提高学生学习数学的兴趣。教学重点:探索并掌握位似图形的定义和性质;教学难点:运用定义和性质进行简单的位似图形的证明和计算。教学方法:从学生生活经验和已有的知识出发,采用引导、启发、合作、探究等方法,经历观察、发现、动手操作、归纳、交流等数学活动,获得知识,形成技能,发展思维,学会学习;提高学生自主探究、合作交流和分析归纳能力;同时在教学过程对不同层次的学生进行分类指导,让每个学生都得到充分的发展。教学准备:刻度尺、为每个小组准备好打印的五幅位似图形、多媒体展示课件、教学手段:小组合作、多媒体辅助教学教学设计说明:1、为了便于学生理解位似图形的特征,我在设计中特别注意让学生通过动手操作、猜想、试验等方式获得感性认识,然后通过归纳总结上升到理性认识,将形象与抽象有机结合,形成对位似图形的认识.2、探索知识是本节的`重点,设计这一环节,通过学生的做、议、读、想、试等环节来完成,把学习的主动权充分放给学生,每一环节及时归纳总结,使学生学有所获,探索创新.教学过程:一、创设情境引入新知观察大屏幕有五个图形,每个图形中的四边形abcd和四边形a1b1c1d1都是相似图形。分别观察着五个图形,你发现每个图形中的两个四边形各对应点的连线有什么特征?(学生经过小组讨论交流的方式总结得出:)特点:(1)两个图形相似:(2)每组对应点所在的直线交于一点。二、合作交流探究新知请同学们阅读课本58页,掌握什么叫位似图形、位似中心、位似比?如果两个相似图形的每组对应点所在的直线交于一点,那么这样的两个图形叫做位似图形,这个交点叫做位似中心,这时两个相似图形的相似比又叫做它们的位似比。议一议观察上图中的五个图形,回答下列问题:(1)在各图形中,位似图形的位似中心与这两个图形有什么位置关系?(2)在各图中,任取一对对应点,度量这两个点到位似中心的距离。它们的比与位似比有什么关系?再换一对对应点试一试。(每小组同学拿出准备好的位似图形通过观察、测量试验和计算得出:)位似图形对应点到位似中心的距离之比等于相似比。由此得出:位似图形的对应点和位似中心在同一条直线上,它们到位似中心的距离之比等于相似比。三、指导应用深化理解(同学们观察大屏幕出示的问题)例1如图d,e分别是ab,ac上的点。(1)如果de∥bc,那么△ade和△abc位似图形吗?为什么?(2)如果△ade和△abc是位似图形,那么de∥bc吗?为什么?小组讨论如何解这道题:问题1,证位似图形的根据是什么?需要哪几个条件?根据是位似图形的定义。需要两个条件:!、△ade和△abc相似;2、对应点所在的直线交于一点。问题2:已知△ade和△abc是位似图形,我们根据什么又能得出什么结论?根据位似图形的性质得出:1、对应点和位似中心在同一条直线上;2、它们到位似中心的距离之比等于相似比。(一生口述师板书:)解:(1)△ade和△abc是位似图形.理由是:∵de∥bc∴∠aed=∠b,∠aed=∠c.∵△ade∽△abc.又∵点a是△ade和△abc的公共点,点d和点b是对应点,点e和点c是对应点,直线bd与ce交于点a,∴△ade和△abc是位似图形。(2)de∥bc.理由是:∵△ade和△abc是位似图形∴△ade∽△abc.∴∠ade=∠b,∴de∥bc.四、继续观察拓展提高(同学们继续观察屏幕展示的图形)在图(1)——(5)中,位似图形的对应线段ab与a1b1是否平行?bc与b1c1,cd与c1d1,ad与a1d1是否平行?为什么?同桌观察探究并发言:对应边平行或在同一条直线上。(出示课件:展示一组位似图形,动画闪动图形的对应边,直观展示位似图形的对应边平行或在同一条直线上)五、反馈练习落实新知挑战自我:1、下面每组图形中都有两个图形.(1)哪一组中的每两个图形是位似图形?(2)作出位似图形的位似中心2、如图ab,cd相交于点e,ac∥db.△ace与△bde是位似图形吗?为什么?(此环节由学生独立完成,第二题让一名学生到黑板上板书,以备面对全体矫正)六、归纳小结反思提高请同学们谈一谈本节课的有什么收获和感想?本节课我们学习了位似图形,知道了什么叫位似图形,位似图