滚动提升练习湖南张家界民族中学数学九年级下册锐角三角函数专题测评练习题(解析版).docx
上传人:一只****签网 上传时间:2024-09-12 格式:DOCX 页数:8 大小:272KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

滚动提升练习湖南张家界民族中学数学九年级下册锐角三角函数专题测评练习题(解析版).docx

滚动提升练习湖南张家界民族中学数学九年级下册锐角三角函数专题测评练习题(解析版).docx

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

湖南张家界民族中学数学九年级下册锐角三角函数专题测评考试时间:90分钟;命题人:校数学教研室考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、某人沿坡度的斜坡向上前进了10米,则他上升的高度为()A.5米B.C.D.2、在中,,则的值是()A.B.C.D.3、如图,在网格中,小正方形的边长均为1,点A、B、C都在格点上,则的正弦值是()A.2B.C.D.4、如图,中,,,点是边上一动点,连接,以为直径的圆交于点.若长为4,则线段长的最小值为()A.B.C.D.5、如图①,,射线,点C在射线BN上,将△ABC沿AC所在直线翻折,点B的对应点D落在射线BN上,点P,Q分别在射线AM、BN上,.设,.若y关于x的函数图象(如图②)经过点,则的值等于()A.B.C.D.6、如图,一艘轮船在小岛A的西北方向距小岛海里的C处,沿正东方向航行一段时间后到达小岛A的北偏东的B处,则该船行驶的路程为()A.80海里B.120海里C.海里D.海里7、如图,若要测量小河两岸相对的两点A,B的距离,可以在小河边取AB的垂线BP上的一点C,测得BC=50米,∠ACB=46°,则小河宽AB为多少米()A.50sin46°B.50cos46°C.50tan46°D.50tan44°8、如图,△ABC的顶点是正方形网格的格点,则sin∠ACB的值为()A.3B.C.D.9、如图,在中,,点D为AB边的中点,连接CD,若,,则的值为()A.B.C.D.10、cos60°的值为()A.B.C.D.1第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题3分,共计30分)1、在中,,,以BC为斜边作等腰,若,则BC边的长为______.2、如图,在正方形ABCD中,点E是AD的中点,点O是AC的中点,AC与BE交于点F,AG⊥BE,CH⊥BE,垂足分别为G,H,连接OH,OG,CG.下列结论:①CH﹣AG=HG;②AG=HG;③BH=OG;④AF∶OF∶OC=2∶1∶3;⑤5S△AFG=S△GHC;⑥OG•AC=BH•CD.其中结论正确的序号是________.3、如图,在菱形ABCD中,DE⊥AB,,则tan∠DBE=__________.4、如图,△ABC中点D为AB的中点,将△ADC沿CD折叠至△A'DC,若4A'C=A'B,BC=,cos∠A'BA=,则点D到AC的距离是___.5、如图,在△ABC中,I是△ABC的内心,O是AB边上一点,⊙O经过点B且与AI相切于点I,若tan∠BAC=,则sin∠ACB的值为_____.6、如图,“心”形是由抛物线和它绕着原点O,顺时针旋转60°的图形经过取舍而成的,其中顶点C的对应点为D,点A,B是两条抛物线的两个交点,点E,F,G是抛物线与坐标轴的交点,则_______________.7、矩形ABCD中,E为边AB上一点,将沿DE折叠,使点A的对应点F恰好落在边BC上,连接AF交DE于点N,连接BN.若,.(1)矩形ABCD的面积为________;(2)的值为_________.8、如图公路桥离地面的高度AC为6米,引桥AB的水平宽度BC为24米,为降低坡度,现决定将引桥坡面改为AD,使其坡度为1:6,则BD的长____.9、如图,在4×4的正方形网格中,△ABC的顶点都在边长为1的小正方形的顶点上,则tan∠ACB的值为_____.10、如图,直线MN过正方形ABCD的顶点A,且∠NAD=30°,AB=2,P为直线MN上的动点,连BP,将BP绕B点顺时针旋转60°至BQ,连CQ,CQ的最小值是___.三、解答题(5小题,每小题10分,共计50分)1、如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,以CD为直径的⊙O分别交AC,BC于点E,F两点,过点F作FG⊥AB于点G.(1)求证:FG是⊙O的切线;(2)若AC=3,CD=2.5,求FG的长.2、(1)计算:.(2)如图,在菱形ABCD中,于点E,,,求菱形的边长.3、小明周末沿着东西走向的公路徒步游玩,在A处观察到电视塔在北偏东37度的方向上,5分钟后在B处观察到电视塔在北偏西53度的方向上.已知电视塔C距离公路A
立即下载